首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
提出利用径向基函数(RBF)神经网络方法对城市道路路段行程时间进行建模NN,并结合线圈和视频实测数据进行仿真分析,以实际行程时间和模型输出的行程时间预测值比较验证了模型的合理性。并将RBF神经网络方法与BP神经网络方法进行比较,结果表明RBF神经网络相对于BP神经网络训练时间短,且预测精度更高。  相似文献   

2.
为了提高高速公路路段行程时间预测的实时性与准确性,提出了基于行程-时间域的路段行程时间预测算法.该算法依据实时检测的交通数据和BP神经网络预测路段单元在不同时间单元的空间平均车速,构建车辆出行的行程-时间域,通过车辆穿越行程-时间域获得路段的预测行程时间.通过比较行程-时间域算法与传统神经网络预测算法,揭示了行程-时间域算法在预测精度上优于传统神经网络算法.以沪宁高速公路路段作为示例背景,基于Vissim仿真软件,验证了所提算法的准确性与可行性.  相似文献   

3.
基于Fuzzy回归的快速路行程时间预测模型研究   总被引:9,自引:1,他引:9  
行程时间预测是交通流诱导系统和交通控制系统研究的一项重要内容。在分析各种行程时间预测方法的基础上,本文提出了基于Fuzzy回归的快速路行程时间预测模型,利用深圳市的交通实测数据对行程时间进行了预测分析。  相似文献   

4.
针对基于单一数据源、利用卡尔曼滤波理论建立行程时间预测模型存在的不足,采用多源数据进行行程时间预测以提高精度。浮动车、固定检测器是常用的交通信息采集方法,在信息种类、数据精度等方面存在一定的互补性。因此,选择2种检测器的实时交通数据作为模型输入参数。利用卡尔曼滤波理论,以流量、占有率、行程时间作为输入量构成参数矩阵,建立城市道路网络行程时间预测模型。并通过Vissim仿真实验验证了模型的有效性。结果表明:基于多源数据的行程时间预测模型平均绝对相对误差为5.45%,其精度比单独采用固定检测器检测数据预测提高了14.4%,比单独采用浮动车数据预测提高了7.5%。  相似文献   

5.
基于电子警察过车数据,分析该周期内车道通行车辆的车头时距变化规律,提出该周期车道排队长度值的实时计算方法。针对多次排队、绿波协调情况,结合通行车辆的行程时间对结果进行修正,得到该周期车道最大车辆排队长度值。通过桐乡市庆丰路实时监控视频对比计算结果,证明本算法具有较高准确性。算法便于工程实践,可为信号配时优化提供数据支撑。  相似文献   

6.
公交站间行程时间具有明显的时段分布特征,且公交车辆是典型的时空过程对象,其运行具有状态转移性。为了准确预测公交站间行程时间,在应用马尔科夫链预测公交站间行程时间基础上提出其改进算法。通过大量公交GPS数据构造不同时段下具体线路站间行程时间的马尔科夫状态转移矩阵,并对站间行程时间进行状态推导,采用移动误差补偿法对马尔科夫预测值进行动态修正,改进原有的马尔科夫预测算法。以广州市BRT线路B1的实际运行数据对算法进行了验证,结果表明,移动误差补偿改进算法优于基本马尔科夫算法及 BP模型,同时该改进算法还具有实现过程较简单。  相似文献   

7.
分析了公交站点间车辆运行过程,将行程预测时间划分为交叉口排队等待时间、路段行驶时间和停站时间3个部分,利用交通波理论和延误三角形,分别建立了无公交专用车道和有公交专用车道2种情况下排队等待时间的动态预测模型;根据乘客到站规律和上下车规律,提出了公交车进站停靠时间模型;针对无公交专用车道条件下的时间预测方法进行了实例演算.实验数据表明,基于交通波行程时间预测方法具有较高的精度,可以满足站点间行程时间预报要求.  相似文献   

8.
路段车辆行程时间和交叉口延误共同构成路径的综合阻抗,通过实际路段车辆行程时间和交叉口延误的交通数据计算路网的路径阻抗,以路网效用函数最大化为优化目标,在比较各种选址方案目标函数的基础上,选取效用函数值最大的方案作为实施方案.采用北京市西直门桥至复兴门桥之间的实际路网作为算例,经计算,其结果与实际情况吻合较好,并与该区域的VMS建设趋势一致.  相似文献   

9.
10.
基于车牌自动识别系统的城市道路行程时间预测算法   总被引:4,自引:0,他引:4  
基于车牌自动识别系统采集的实时行程时间数据,提出了一种实用的行程时间预测算法。面对城市道路交通流较为复杂的现状,通过界定预测状态,选择了可靠的预测策略,针对采样量足够、采样量不足、部分采集设备故障3种情况,提出了应对算法方案。结合实际调查的数据进行了实例分析。结果表明,该算法具有良好的预测效果。  相似文献   

11.
针对交通规划软件常用的BPR公交流量延误函数在饱和度接近或大于1时,计算值与实际值相差急剧增大的不足,提出一种锥形流量延误函数,并分析了其对公交行程时间的影响,进而通过等式关系实现模型在交通仿真软件EMME/3中的实用化.相关的案例分析显示,在公交行程时间拟合方面,锥形流量延误模型较传统的BPR曲线模型误差均值降低5.57%,误差的波动降低50.60%,效果显著.  相似文献   

12.
通过分析在满足一定可靠性要求条件下出行者追求总预期出行时间最小的择路行为,定义交通网络的惯常均衡态。以不同的出行者会增加相异的出行时间预算为假设前提,建立相应的多用户变分不等式交通分配模型。这一模型不仅具有不依赖具体路阻函数形式的一般化建模特征,而且避免了现有文献中必须处理非凸约束集的问题,因此可以对模型的解进行定性分析。针对该模型,提出相应的求解算法。由于求解算法仅需对现有的网络交通分配算法加以局部修改即可实现,因此可被应用于实际规模的网络分析。通过算例结果的比较分析说明新模型及算法不仅有效,而且更符合现实。  相似文献   

13.
综合考虑到浮动车检测技术与感应线圈检测技术的优缺点,为了提高道路行程时间估计的精度及完备性,提出基于浮动车与感应线圈的融合检测技术的行程时间估计模型。该模型利用神经网络技术对两种检测技术同一路段的检测数据进行融合,从而达到提高道路行程时间估计精度和完备性的目的。最后,以广州市7 000多辆装有GPS装置的出租车所提供的浮动车数据、100多个安装在广州市各主要道路口上的感应线圈检测器提供的感应线圈数据以及广州市交通电子地图为基础,在10条道路上分别随机选取的500个两种检测数据对提出的模型进行了验证,试验结果表明,此模型在道路行程时间估计的精度方面较浮动车移动检测技术与感应线圈技术有较大提高。  相似文献   

14.
为了给公交优先信号配时系统提供足够的"思考"时间和准确的控制依据,基于重庆市RFID电子车牌数据提出了一种采用自适应渐消卡尔曼滤波和小波神经网络组合模型动态预测公交行程时间的方法。综合分析公交行程时间的动态和静态影响因素,选取的模型输入参量为标准车流量、路段车辆平均行程时间、平均车速离散性和前班次公交行程时间。利用RFID电子车牌系统采集重庆市鹅公岩大桥路段车辆行驶数据,选取3 000组实际运行数据完成公交行程时间预测模型的训练,另筛选50组数据验证模型的有效性和准确性。研究结果表明:组合模型可动态自适应预测公交行程时间,预测值平均相对误差为3.23%,绝对误差集中在8 s左右,明显优于2种单一模型和基于传统GPS数据的公交行程时间预测模型,可认为选择RFID电子车牌数据作为组合模型的输入,能够明显改善模型预测精度;组合模型预测值的残差分布更为集中、鲁棒性较好,泛化能力强。选择平均绝对误差值、均方根误差值和平均绝对百分比误差作为模型评价指标,结果进一步表明,组合模型的综合预测效果明显优于单一的自适应渐消卡尔曼滤波和小波神经网络。研究方案可为先进公交信息化系统提供良好的技术支撑。  相似文献   

15.
以城市居民出行方式选择行为作为研究对象,分析了影响出行方式选择行为的主要因素,利用BP神经网络可以自动获取研究对象的输入、输出间关系和较强的学习训练特性,建立了基于BP神经网络的居民出行方式选择模型,并通过2009年济南市居民出行调查数据对模型进行了实例分析。结果表明:BP神经网络模型能够较好地描述居民出行交通方式选择行为。  相似文献   

16.
高速公路变通量预测对于高速公路建设和管理具有重要的指导作用。针对传统预测方法准确性低、预测时间长等问题,建立了遗传过程神经元网络优化模型,该模型既利用遗传算法全局搜索、快速收敛的优点,又利用过程神经元网络非线性描述、自学习自适应的优点,并以实际道路为例进行计算机仿真,实证分析的结果表明,该方法能够有效提高交通量的预测精度。  相似文献   

17.
根据城市快速路交通诱导和监控系统的实际需要,提出了基于宏观动态流体力学模型的行程时间预测技术,可以动态预测稳定流和非稳定流状况下城市快速路网上任意两点间行程时间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号