首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
矿砂船货舱NO.1舱口盖结构强度分析   总被引:1,自引:0,他引:1  
陈家旺  韩强  杨新利 《船舶》2011,22(6):40-45
以320000DWT矿砂船NO.1舱口盖为研究对象,使用MSC.Patran软件建立舱口盖结构模型,根据规范IASCUR$21。施加相应的载荷、边界条件等。利用MSC.Nastran软件对该结构进行数值计算,分析结构的应力水平,最后对NO.1舱口盖的屈服和屈曲强度进行校核,经过分析得出NO.1舱口盖的强度满足规范IASCUR$21要求。  相似文献   

2.
ClassNK has undertaken wide-ranging basic research covering many aspects related to the safety of ship structures, including design loads, structural analysis, strength assessment of buckling, collapse, and fatigue, and rational corrosion margins to develop new design standards which have transparency and consistency. Among the wide-ranging basic research, this article summarizes the results of extensive work on the design loads used for strength assessments of tanker and bulk carrier structures. The main aim of the research was to develop practical estimation methods of design loads with rational technical backgrounds relating to the actual loads acting on the primary structural members of tankers and bulk carriers. During this study, we proposed the following methodology. Design sea states that closely resemble the actual sea states which are considered to be the most severe for hull structures. Find practical estimation methods for the design sea states by parametric studies using the results of series calculations on representative tankers and bulk carriers. Find practical estimation methods for design regular waves which will result in the same level of stresses as those induced in irregular waves under the design sea states. We also briefly introduced some practical estimation methods for the design loads, such as ship motions, accelerations, hull-girder bending moments, and hydrodynamic pressures that are induced under design regular waves. The findings in this study have been summarized and implemented in the new design standards for tanker and bulk carrier structures.Updated from the Japanese original which won the 2003 SNAJ prize (J Soc Nav Archit Jpn 2002; 191:195–207; 2002; 191:208–220; and 2002; 192:723–733)  相似文献   

3.
肖锋  吴剑国  孙燕 《船舶》2010,21(2):30-34
基于CSR共同规范提出的逐步破坏分析法,自编船体梁极限强度计算软件,对多艘各种类型结构船舶进行计算,得到与多位学者相近的结果。与用有限元程序Patran建模、MSC/Marc计算优选散货船得出结果也有很好的近似。计算结果表明,CSR的方法有较高的精确度。  相似文献   

4.
The stress combination method for the fatigue assessment of the hatch corner of a bulk carrier was investigated based on equivalent waves.The principles of the equivalent waves of ship structures were given,including the determination of the dominant load parameter,heading,frequency,and amplitude of the equivalent regular waves.The dominant load parameters of the hatch corner of a bulk carrier were identified by the structural stress response analysis,and then a series of equivalent regular waves were defined based on these parameters.A combination method of the structural stress ranges under the different equivalent waves was developed for the fatigue analysis.The combination factors were obtained by least square regression analysis with the stress ranges derived from spectral fatigue analysis as the target value.The proposed method was applied to the hatch corner of another bulk carrier as an example.This shows that the results from the equivalent wave approach agree well with those from the spectral fatigue analysis.The workload is reduced substantially.This method can be referenced in the fatigue assessment of the hatch corner of a bulk carrier.  相似文献   

5.
This paper considers the physical processes of corrosion that occur in bulk carriers. Three main types of corrosive environments are identified within a bulk carrier, namely, immersion in seawater, exposure to an enclosed atmosphere, and exposure to porous media. Fundamental variables influencing corrosion in each environment of the cargo hold region, ballast tanks and void spaces are identified. These serve to identify operational parameters that affect bulk carrier corrosion. It is proposed that such parameters can be used to obtain corrosion rate databases representative of vessel operation.  相似文献   

6.
散货船在装载矿石等重货时,通常只装载在奇数货舱内,这就是所谓的隔舱重载工况。在这种工况下,中间舱的双层底结构除受到总纵弯曲作用外,还会受到邻舱重货引起的局部弯曲作用,而且该局部弯曲的作用会降低中拱状态下船体梁的极限强度。文章提出了一种简易计算方法,顶边舱结构和底边舱结构可以看作两根梁,双层底结构可视作正交异性板,运用双梁理论和正交异性板理论可推导出局部弯曲的影响。然后,考虑该局部弯曲的作用,用Smith法计算船体梁的极限强度。最后,将文中方法计算的结果与FEM结果进行比较,并对结果进行了分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号