首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capacity, demand, and vehicle based emissions reduction strategies are compared for several pollutants employing aggregate US congestion and vehicle fleet condition data. We find that congestion mitigation does not inevitably lead to reduced emissions; the net effect of mitigation depends on the balance of induced travel demand and increased vehicle efficiency that in turn depend on the pollutant, congestion level, and fleet composition. In the long run, capacity-based congestion improvements within certain speed intervals can reasonably be expected to increase emissions of CO2e, CO, and NOx through increased vehicle travel volume. Better opportunities for emissions reductions exist for HC and PM2.5 emissions, and on more heavily congested arterials. Advanced-efficiency vehicles with emissions rates that are less sensitive to congestion than conventional vehicles generate less emissions co-benefits from congestion mitigation.  相似文献   

2.
Lithium traction batteries are a key enabling technology for plug-in electric vehicles (PEVs). Traction battery manufacture contributes to vehicle production emissions, and battery performance can have significant effects on life cycle greenhouse gas (GHG) emissions for PEVs. To assess emissions from PEVs, a life cycle perspective that accounts for vehicle production and operation is needed. However, the contribution of batteries to life cycle emissions hinge on a number of factors that are largely absent from previous analyses, notably the interaction of battery chemistry alternatives and the number of electric vehicle kilometers of travel (e-VKT) delivered by a battery. We compare life cycle GHG emissions from lithium-based traction batteries for vehicles using a probabilistic approach based on 24 hypothetical vehicles modeled on the current US market. We simulate life-cycle emissions for five commercial lithium chemistries. Examining these chemistries leads to estimates of emissions from battery production of 194–494 kg CO2 equivalent (CO2e) per kWh of battery capacity. Combined battery production and fuel cycle emissions intensity for plug-in hybrid electric vehicles is 226–386 g CO2e/e-VKT, and for all-electric vehicles 148–254 g CO2e/e-VKT. This compares to emissions for vehicle operation alone of 140–244 g CO2e/e-VKT for grid-charged electric vehicles. Emissions estimates are highly dependent on the emissions intensity of the operating grid, but other upstream factors including material production emissions, and operating conditions including battery cycle life and climate, also affect life cycle GHG performance. Overall, we find battery production is 5–15% of vehicle operation GHG emissions on an e-VKT basis.  相似文献   

3.
This study provides a comprehensive comparison of well-to-wheel (WTW) energy demand, WTW GHG emissions, and costs for conventional ICE and alternative passenger car powertrains, including full electric, hybrid, and fuel cell powertrains. Vehicle production, operation, maintenance, and disposal are considered, along with a range of hydrogen production processes, electricity mixes, ICE fuels, and battery types. Results are determined based on a reference vehicle, powertrain efficiencies, life cycle inventory data, and cost estimations. Powertrain performance is measured against a gasoline ICE vehicle. Energy carrier and battery production are found to be the largest contributors to WTW energy demand, GHG emissions, and costs; however, electric powertrain performance is highly sensitive to battery specific energy. ICE and full hybrid vehicles using alternative fuels to gasoline, and fuel cell vehicles using natural gas hydrogen production pathways, are the only powertrains which demonstrate reductions in all three evaluation categories simultaneously (i.e., WTW energy demand, emissions, and costs). Overall, however, WTW emission reductions depend more on the energy carrier production pathway than on the powertrain; hence, alternative energy carriers to gasoline for an ICE-based fleet (including hybrids) should be emphasized from a policy perspective in the short-term. This will ease the transition towards a low-emission fleet in Switzerland.  相似文献   

4.
We model consumer preferences for conventional, hybrid electric, plug-in hybrid electric (PHEV), and battery electric (BEV) vehicle technologies in China and the U.S. using data from choice-based conjoint surveys fielded in 2012–2013 in both countries. We find that with the combined bundle of attributes offered by vehicles available today, gasoline vehicles continue in both countries to be most attractive to consumers, and American respondents have significantly lower relative willingness-to-pay for BEV technology than Chinese respondents. While U.S. and Chinese subsidies are similar, favoring vehicles with larger battery packs, differences in consumer preferences lead to different outcomes. Our results suggest that with or without each country’s 2012–2013 subsidies, Chinese consumers are willing to adopt today’s BEVs and mid-range PHEVs at similar rates relative to their respective gasoline counterparts, whereas American consumers prefer low-range PHEVs despite subsidies. This implies potential for earlier BEV adoption in China, given adequate supply. While there are clear national security benefits for adoption of BEVs in China, the local and global social impact is unclear: With higher electricity generation emissions in China, a transition to BEVs may reduce oil consumption at the expense of increased air pollution and/or greenhouse gas emissions. On the other hand, demand from China could increase global incentives for electric vehicle technology development with the potential to reduce emissions in countries where electricity generation is associated with lower emissions.  相似文献   

5.
Municipal fleet vehicle purchase decisions provide a direct opportunity for cities to reduce emissions of greenhouse gases (GHG) and air pollutants. However, cities typically lack comprehensive data on total life cycle impacts of various conventional and alternative fueled vehicles (AFV) considered for fleet purchase. The City of Houston, Texas, has been a leader in incorporating hybrid electric (HEV), plug-in hybrid electric (PHEV), and battery electric (BEV) vehicles into its fleet, but has yet to adopt any natural gas-powered light-duty vehicles. The City is considering additional AFV purchases but lacks systematic analysis of emissions and costs. Using City of Houston data, we calculate total fuel cycle GHG and air pollutant emissions of additional conventional gasoline vehicles, HEVs, PHEVs, BEVs, and compressed natural gas (CNG) vehicles to the City's fleet. Analyses are conducted with the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model. Levelized cost per kilometer is calculated for each vehicle option, incorporating initial purchase price minus residual value, plus fuel and maintenance costs. Results show that HEVs can achieve 36% lower GHG emissions with a levelized cost nearly equal to a conventional sedan. BEVs and PHEVs provide further emissions reductions, but at levelized costs 32% and 50% higher than HEVs, respectively. CNG sedans and trucks provide 11% emissions reductions, but at 25% and 63% higher levelized costs, respectively. While the results presented here are specific to conditions and vehicle options currently faced by one city, the methods deployed here are broadly applicable to informing fleet purchase decisions.  相似文献   

6.
The study develops scenarios regarding the introduction of electric vehicles to the passenger vehicle fleet of Norway to reach the 2020 Norwegian greenhouse gas reduction target and a more extreme target to limit global temperature increase to two degrees. A process-based life cycle assessment approach is integrated with a temporally variable inventory model to evaluate the environmental impacts of these scenarios. We find that greenhouse gases in the reference scenario increase by 10% in 2020 in comparison to 2012; while for the more intensive improvements in conventional vehicles, this increase is reduced to 2%. For electric vehicles deployment scenarios, although the fleet share will reduce the tailpipe greenhouse gas emissions by 8–26%, with the upper end representing the two-degree reduction target, emissions reductions over the entire life cycle are only 3–15%. Electric vehicles also reduce emissions of NOx, SO2 and particulates reducing acidification, smog formation and particulate formation impacts, however, with addition of large numbers of electric vehicles significant trade-offs in toxicity impacts are found.  相似文献   

7.
This paper evaluates the impacts on energy consumption and carbon dioxide (CO2) emissions from the introduction of electric vehicles into a smart grid, as a case study. The AVL Cruise software was used to simulate two vehicles, one electric and the other engine-powered, both operating under the New European Driving Cycle (NEDC), in order to calculate carbon dioxide (CO2) emissions, fuel consumption and energy efficiency. Available carbon dioxide data from electric power generation in Brazil were used for comparison with the simulated results. In addition, scenarios of gradual introduction of electric vehicles in a taxi fleet operating with a smart grid system in Sete Lagoas city, MG, Brazil, were made to evaluate their impacts. The results demonstrate that CO2 emissions from the electric vehicle fleet can be from 10 to 26 times lower than that of the engine-powered vehicle fleet. In addition, the scenarios indicate that even with high factors of CO2 emissions from energy generation, significant reductions of annual emissions are obtained with the introduction of electric vehicles in the fleet.  相似文献   

8.
There have been ongoing debates over whether battery electric vehicles contribute to reducing greenhouse gas emissions in China’s context, and if yes, whether the greenhouse gas emissions reduction compensates the cost increment. This study informs such debate by examining the life-cycle cost and greenhouse gas emissions of conventional vehicles, hybrid electric vehicles and battery electric vehicles, and comparing their cost-effectiveness for reducing greenhouse gas emissions. The results indicate that under a wide range of vehicle and driving configurations (range capacity, vehicle use intensity, etc.), battery electric vehicles contribute to reducing greenhouse gas emissions compared with conventional vehicles, although their current cost-effectiveness is not comparable with hybrid electric vehicles. Driven by grid mix optimization, power generation efficiency improvement, and battery cost reduction, the cost-effectiveness of battery electric vehicles is expected to improve significantly over the coming decade and surpass hybrid electric vehicles. However, considerable uncertainty exists due to the potential impacts from factors such as gasoline price. Based on the analysis, it is recommended that the deployment of battery electric vehicles should be prioritized in intensively-used fleets such as taxis to realize high cost-effectiveness. Technology improvements both in terms of power generation and vehicle electrification are essential in improving the cost-effectiveness of battery electric vehicles.  相似文献   

9.
The accelerated diffusion of cleaner vehicles to reduce CO2 emissions in transport can be explicitly integrated in emission trading designs by making use of cross-sectoral energy efficiency investment opportunities that are found in data on CO2 emissions during the production and the use of cars and trucks. We therefore elaborate the introduction of tradable certificates that are allocated or grandfathered to manufacturers that provide vehicles (and other durable goods) that enable their customers to reduce their own CO2 emissions. This certificate is an allowance for each tonne CO2 avoided. Manufacturers can then sell these certificates on the emission market and use the revenues to lower the price of their cleanest vehicles. This mechanism should partially overcome the price difference with less efficient cars. In a simulation, we found that the introduction of the certificate in tradable permit systems can lead to very significant reductions of CO2 emissions. The simulations indicate that CO2 emissions resulting from the car fleet can be reduced by 25 to 38% over a period of 15 years (starting in 1999). For the truck fleet, the reduction potential is more limited but still very interesting.  相似文献   

10.
Vehicles typically deteriorate with accumulating mileage and emit more tailpipe air pollutants per mile. Although incentive programs for scrapping old, high-emitting vehicles have been implemented to reduce urban air pollutants and greenhouse gases, these policies may create additional sales of new vehicles as well. From a life cycle perspective, the emissions from both the additional vehicle production and scrapping need to be addressed when evaluating the benefits of scrapping older vehicles. This study explores an optimal fleet conversion policy based on mid-sized internal combustion engine vehicles in the US, defined as one that minimizes total life cycle emissions from the entire fleet of new and used vehicles. To describe vehicles' lifetime emission profiles as functions of accumulated mileage, a series of life cycle inventories characterizing environmental performance for vehicle production, use, and retirement was developed for each model year between 1981 and 2020. A simulation program is developed to investigate ideal and practical fleet conversion policies separately for three regulated pollutants (CO, NMHC, and NOx) and for CO2. According to the simulation results, accelerated scrapping policies are generally recommended to reduce regulated emissions, but they may increase greenhouse gases. Multi-objective analysis based on economic valuation methods was used to investigate trade-offs among emissions of different pollutants for optimal fleet conversion policies.  相似文献   

11.
This paper investigates the market potential and environmental benefits of replacing internal combustion engine (ICE) vehicles with battery electric vehicles (BEVs) in the taxi fleet in Nanjing, China. Vehicle trajectory data collected by onboard global positioning system (GPS) units are used to study the travel patterns of taxis. The impacts of charger power, charging infrastructure coverage, and taxi apps on the feasibility of electric taxis are quantified, considering taxi drivers’ recharging behavior and operating activities. It is found that (1) depending on the charger power and coverage, 19% (with AC Level 2 chargers and 20% charger network coverage) to 56% (with DC chargers and 100% charger network coverage) of the ICE vehicles can be replaced by electric taxis without driving pattern changes; (2) by using taxi apps to find nearby passengers and charging stations, drivers could utilize the empty cruising time to charge the battery, which may increase the acceptance of BEVs by up to 82.6% compared to the scenario without taxi apps; and (3) tailpipe emissions in urban areas could be significantly reduced with taxi electrification: a mixed taxi fleet with 46% compressed-natural-gas-powered (CNG) and 54% electricity-powered vehicles can reduce the tailpipe emissions by 48% in comparison with the fleet of 100% CNG taxis.  相似文献   

12.
The future of US transport energy requirements and emissions is uncertain. Transport policy research has explored a number of scenarios to better understand the future characteristics of US light-duty vehicles. Deterministic scenario analysis is, however, unable to identify the impact of uncertainty on the future US vehicle fleet emissions and energy use. Variables determining the future fleet emissions and fuel use are inherently uncertain and thus the shortfall in understanding the impact of uncertainty on the future of US transport needs to be addressed. This paper uses a stochastic technology and fleet assessment model to quantify the uncertainties in US vehicle fleet emissions and fuel use for a realistic yet ambitious pathway which results in about a 50% reduction in fleet GHG emissions in 2050. The results show the probability distribution of fleet emissions, fuel use, and energy consumption over time out to 2050. The expected value for the fleet fuel consumption is about 450 and 350 billion litres of gasoline equivalent with standard deviations of 40 and 80 in 2030 and 2050, respectively. The expected value for the fleet GHG emissions is about 1360 and 850 Mt CO2 equivalent with standard deviation of 130 and 230 in 2030 and 2050 respectively. The parameters that are major contributors to variations in emissions and fuel consumption are also identified and ranked through the uncertainty analysis. It is further shown that these major contributors change over time, and include parameters such as: vehicle scrappage rate, annual growth of vehicle kilometres travelled in the near term, total vehicle sales, fuel economy of the dominant naturally-aspirated spark ignition vehicles, and percentage of gasoline displaced by cellulosic ethanol. The findings in this paper demonstrate the importance of taking uncertainties into consideration when choosing amongst alternative fuel and emissions reduction pathways, in the light of their possible consequences.  相似文献   

13.
This paper evaluates the contribution of the road transport sector, in a typical small developing country, to global greenhouse gas emissions. An inventory of transport emissions, using the Intergovernmental Panel on Climate Change methodology, is presented for the base year 1997. The Motor Vehicle Emission Inventory computer based model, with inputs adjusted to the fleet and conditions at hand, is used to predict contributions of different classes of vehicles and to forecast the corresponding emissions for the year 2020. Emissions reduction and the sensitivity to changes in factors such as fleet age, fleet technology, average speed and travel volume are assessed. Scenarios are developed to explore the feasibility and benefits of two different mitigation approaches. The first approach stresses the reduction potential of measures related to the fleet age and new technology application. The second addresses the effectiveness of transport planning and demand reduction in mitigating emissions. The air quality impact of these scenarios is presented. The results bring to light the essence of the problem that technical improvements alone, in the existing fleet, will not be able to offset impacts due to the growth in future travel demand. Policy settings to counterbalance the increase in emissions are investigated in that context.  相似文献   

14.
The corporate average fuel economy (CAFE) standard is the major policy tool to improve the fleet average miles per gallon of automobile manufacturers in the US. The Alternative Motor Fuels Act (AMFA) provides special treatment in calculating the fuel economy of alternative-fuel vehicles to give manufacturers CAFE incentives to produce more alternative-fuel vehicles. AMFA has as its goals an increase in the production of alternative-fuel vehicles and a decrease in gasoline consumption and greenhouse gas emissions. This paper examines theoretically the effects of the program set up under AMFA. It finds that, under some conditions, this program may actually increase the production of fuel-inefficient gasoline vehicles, gasoline consumption and greenhouse gas emissions.  相似文献   

15.
The use of fossil fuels in transportation generates harmful emissions that accounts for nearly half of the total pollutants in urban areas. Dealing with this issue, local authorities are dedicating specific efforts to seize the opportunity offered by new fuels and technological innovations in achieving a cleaner urban mobility. In fact, authorities are improving environmental performances of their public transport fleet by procuring cleaner vehicles, usually called low and zero emission vehicles (LEV and ZEV, respectively). Nevertheless there seems to be a lack of methodologies for supporting stakeholders in decisions related to the introduction of green vehicles, whose allocation should be performed since the network design process in order to optimize their available green capacity.In this paper, the problem of clean vehicle allocation in an existing public fleet is faced by introducing a method for solving the transit network design problem in a multimodal, demand elastic urban context dealing with the impacts deriving from transportation emissions.The solving procedure consists of a set of heuristics which includes a routine for route generation and a genetic algorithm for finding a sub-optimal set of routes with the associated frequencies.  相似文献   

16.
Carsharing programs that operate as short-term vehicle rentals (often for one-way trips before ending the rental) like Car2Go and ZipCar have quickly expanded, with the number of US users doubling every 1–2 years over the past decade. Such programs seek to shift personal transportation choices from an owned asset to a service used on demand. The advent of autonomous or fully self-driving vehicles will address many current carsharing barriers, including users’ travel to access available vehicles.This work describes the design of an agent-based model for shared autonomous vehicle (SAV) operations, the results of many case-study applications using this model, and the estimated environmental benefits of such settings, versus conventional vehicle ownership and use. The model operates by generating trips throughout a grid-based urban area, with each trip assigned an origin, destination and departure time, to mimic realistic travel profiles. A preliminary model run estimates the SAV fleet size required to reasonably service all trips, also using a variety of vehicle relocation strategies that seek to minimize future traveler wait times. Next, the model is run over one-hundred days, with driverless vehicles ferrying travelers from one destination to the next. During each 5-min interval, some unused SAVs relocate, attempting to shorten wait times for next-period travelers.Case studies vary trip generation rates, trip distribution patterns, network congestion levels, service area size, vehicle relocation strategies, and fleet size. Preliminary results indicate that each SAV can replace around eleven conventional vehicles, but adds up to 10% more travel distance than comparable non-SAV trips, resulting in overall beneficial emissions impacts, once fleet-efficiency changes and embodied versus in-use emissions are assessed.  相似文献   

17.
Car ownership in China is expected to grow dramatically in the coming decades. If growing personal vehicle demand is met with conventional cars, the increase in greenhouse gas emissions will be substantial. One way to mitigate carbon dioxide (CO2) emissions from passenger travel is to meet growing demand for cars with alternative vehicles such as hybrid- and battery-electric vehicles (HEVs and BEVs). Our study examines the cost-effectiveness of transitioning from conventional cars to HEVs and BEVs, by calculating their marginal abatement cost (MAC) of carbon in the long-run. We find that transitioning from conventional to hybrid and battery electric light-duty, four-wheel vehicles can achieve carbon emissions reductions at a negative cost (i.e. at a net benefit) in China. In 2030, the average MAC is estimated to be about −$140/ton CO2 for HEVs and −$515/ton CO2-saved for BEVs, varying by key parameters. The total mitigation potential of each vehicle technology is estimated to be 1.38 million tons for HEVs and 0.75 million tons for BEVs.  相似文献   

18.
The vehicle fleet in the Ceará state has grown 180% over the last ten years. The growth of the resulting emissions is unknown in view of the expansion of this fleet in the greater Fortaleza Metropolitan Area (FMA). The largest fleet in the FMA is in the Fortaleza city itself, where flex fuel vehicles predominate (∼30%). Flex fuel motorcycles increased significantly (greater than 800%) between 2010 and 2015. This paper aims to estimate the road vehicle emissions of carbon monoxide (CO), non-methane hydrocarbons (NMHC), aldehydes (RCHO), nitrogen oxides (NOx), and particulate matter (PM) from the main road vehicle fleets of Fortaleza and its metropolitan area using a macrosimulation, bottom-up method, between 2010 and 2015. The results showed that road vehicle emissions of CO, NMHC and RCHO increased mainly by Otto cycle vehicles increase due to the introduction of flex fuel vehicles; however, the NOx and PM emissions noticeable reduction is also a result of emission policies that seed the introduction of new technologies. In 2015, more than 70,000 tons of CO (21.2 ton/1000person), 8000 tons of NMHC (2.5 ton/1000person), 290 tons of RCHO (0.09 ton/1000person), 15,000 tons of NOx (4.4 ton/1000person) and 600 tons of PM (0.2 ton/1000person) were emitted in the region under study. Comparing with other Brazilian regions, FMA emit higher levels of pollutants per inhabitant than the state of São Paulo and the state of Rio de Janeiro but lower levels than Porto Alegre city.  相似文献   

19.
This paper presents results from a plug-in hybrid vehicle drive share program involving retrofitted hybrid electric vehicles. A potential for high fuel efficiency is indicated, however, the average fuel efficiency was only marginally better than conventional hybrid vehicles. This is due to the majority of vehicle miles traveled occurring on trips outside the “all electric” range and very short trips where fuel consumption is dominated by emissions control strategies. The work also considers the availability of the battery for vehicle to grid services and finds that there are a large number of trips in the afternoon period, typically when electrical demand is at a peak. Vehicle charging activity also tended towards daytime activity, contrary to the oft-assumed off-peak charging pattern.  相似文献   

20.
The major barriers to a more widespread introduction of battery electric vehicles (BEVs) beyond early adopters are the limited range, charging limitations, and costly batteries. An important question is therefore where these effects can be most effectively mitigated. An optimization model is developed to estimate the potential for BEVs to replace one of the conventional cars in two-car households and to viably contribute to the households’ driving demand. It uses data from 1 to 3 months of simultaneous GPS logging of the movement patterns for both cars in 64 commuting Swedish two-car households in the Gothenburg region.The results show that, for home charging only, a flexible vehicle use strategy can considerably increase BEV driving and nearly eliminate the unfulfilled driving in the household due to the range and charging limitations with a small battery. The present value of this flexibility is estimated to be on average $6000–$7000 but varies considerably between households. With possible near-future prices for BEVs based on mass production cost estimates, this flexibility makes the total cost of ownership (TCO) for a BEV advantageous in almost all the investigated households compared to a conventional vehicle or a hybrid electric vehicle. Because of the ubiquity of multi-car households in developed economies, these families could be ideal candidates for the initial efforts to enhance BEV adoptions beyond the early adopters. The results of this research can inform the design and marketing of cheaper BEVs with small but enough range and contribute to increased knowledge and awareness of the suitability of BEVs in such households.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号