首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In recent years, several studies show that people who live, work or attend school near the main roadways have an increased incidence and severity of health problems that may be related with traffic emissions of air pollutants. The concentrations of near-road atmospheric pollutants vary depending on traffic patterns, environmental conditions, topography and the presence of roadside structures. In this study, the vertical and horizontal variation of nitrogen dioxide (NO2) and benzene (C6H6) concentration along a major city ring motorway were analysed. The main goal of this study is to try to establish a distance from this urban motorway considered “safe” concerning the air pollutants human heath limit values and to study the influence of the different forcing factors of the near road air pollutants transport and dispersion. Statistic significant differences (p = 0.001, Kruskal–Wallis test) were observed between sub-domains for NO2 representing different conditions of traffic emission and pollutants dispersion, but not for C6H6 (p = 0.335). Results also suggest significant lower concentrations recorded at 100 m away from roadway than at the roadside for all campaigns (p < 0.016 (NO2) and p < 0.036 (C6H6), Mann–Whitney test). In order to have a “safe” life in homes located near motorways, the outdoor concentrations of NO2 must not exceed 44–60.0 μg m−3 and C6H6 must not exceed 1.4–3.3 μg m−3. However, at 100 m away from roadway, 81.8% of NO2 receptors exceed the annual limit value of human health protection (40 μg m−3) and at the roadside this value goes up to 95.5%. These findings suggest that the safe distance to an urban motorway roadside should be more at least 100 m. This distance should be further studied before being used as a reference to develop articulated urban mobility and planning policies.  相似文献   

2.
The study inspects the traffic-induced gaseous emission dispersion characteristics from the urban roadside sites in Delhi, India. The concentration of pollutants viz. CO, NO2 and SO2 along with traffic and ambient atmospheric conditions at five selected local urban road sites were simultaneously measured. A developed General Finite Line Source Model (GFLSM) was used to predict the local roadside CO, NO2 and SO2 concentrations. A comparison of the observed and predicted values emission parameters using GFLS model has shown that the predicted values for SO2, CO and NO2 at all the selected local urban roadside locations are found to lie within the error bands of 5%, 6%, and 7% respectively. A high level of agreement was found between the monitored and estimated CO, NO2 and SO2 concentration data. From the study, it has also been established that the developed model exhibits the capability of reasonably predicting the characteristics of gaseous pollutants dispersion from on-road vehicles for the urban city air quality.  相似文献   

3.
Different methods for predicting levels of roadside NO2 from NOx concentrations have been proposed. Prior work suggests that either a linear or a logarithmic relationship exists among the roadside NO2 and NOx concentrations. We modify and compare those methods with new formulations based on the principles of the original methods for datasets pertaining to Dublin. A new relationship based on the power law is developed to better model the decay of the ratio of (NO2/NOx)road ratio with increasing NOx concentration. These formulations are compared and examined at two study sites: at an intermittently congested urban street canyon and a free-flowing motorway.  相似文献   

4.
CO, CO2, NOx and HC emissions of two stroke-powered tricycles in Metro Manila are examined using an instantaneous emissions model. Results show that fuel consumption and HC emissions in middle class residential areas and main roads are similar but lower than levels in low income residential areas. On the average, tricycles in Metro Manila consume 24.41 km/l of fuel and produces 9.5, 9.7, 40.5 and 0.07 g/km of HC, CO, CO2 and NOx, respectively. They fail to satisfy HC, CO and NOx emission limits set by reference standards in the Philippines and other Asian countries. They produce greater HC and CO emissions than gasoline fueled private cars and diesel powered public jeepneys, taxis and buses on a per passenger-km basis but significantly lower NOx emissions. Tricycles account for 15.4% of the total HC emissions from mobile sources in the metropolis while their contributions to CO, CO2 and NOx are minimal.  相似文献   

5.
In this paper, we propose an extended car-following model to study the influences of the driver’s bounded rationality on his/her micro driving behavior, and the fuel consumption, CO, HC and NOX of each vehicle under two typical cases, where Case I is the starting process and Case II is the evolution process of a small perturbation. The numerical results indicate that considering the driver’s bounded rationality will reduce his/her speed during the starting process and improve the stability of the traffic flow during the evolution of the small perturbation, and reduce the total fuel consumption, CO, HC and NOX of each vehicle under the above two cases.  相似文献   

6.
In this study, the effects of isolated traffic calming measures and area-wide calming schemes on air quality in a dense neighborhood were estimated using a combination of microscopic traffic simulation, emission, and dispersion modeling. Results indicated that traffic calming measures did not have as large an effect on nitrogen dioxide (NO2) concentrations as the effect observed on nitrogen oxide (NOx) emissions. Changes in emissions resulted in highly disproportional changes in pollutant levels due to daily meteorological conditions, road geometry and orientation with respect to the wind. Average NO2 levels increased between 0.1% and 10% with respect to the base-case while changes in NOx emissions varied between 5% and 160%. Moreover, higher wind speeds decreased NO2 concentrations on both sides of the roadway. Among the traffic calming measures, speed bumps produced the highest increases in NO2 levels.  相似文献   

7.
Recent and anticipated growth in passenger ferry service has been complicated by concerns about air pollution from marine engines that are only starting to be regulated. While marine engines are known to be a significant and growing source category in some locations, sparse data and analytical difficulties have prevented rigorous comparisons of marine and on-land passenger travel. Using data gathered in the San Francisco Bay Area, we model emissions from three passenger ferries and the matching on-land travel that would be used by commuters if ferry service were not available. The results are analyzed parametrically for levels of ridership and induced travel demand, and for new technologies, including selective catalytic reduction and natural gas fuel. Results indicate that under some conditions, passenger ferries reduce some emissions (including particulate matter emissions) relative to the matching on-land service but increase others. Emissions of NOX are particularly problematic––all the technologies examined lead to increased NOX emissions due to ferry commuting. Some of the emissions comparisons are sensitive to mode split, ridership, or induced travel demand. However, NOX emissions are not––ferry commuting always raises NOX emissions, even with the most advanced technologies. Implications for local air quality regulators and for technology development are discussed.  相似文献   

8.
The paper develops a forecasting model of emissions from traffic flows embracing the dynamics of driving behavior due to variations in payload. To measure of emissions at the level of individual vehicles under varying payloads a portable emission measurement system is used. This paper reports on a model based on data at the level of individual vehicles for a representative road trajectory. The model aggregates the data to the level of a homogeneous flow dependent of velocity and specific power, which is dependent on payload weight. We find a lean specification for the model that provides emission factors for CO2, NOx, HC, CO, and NO2. The results indicate that, in comparison with earlier models, NOx emissions in particular tend to be underestimated.  相似文献   

9.
In this study, we estimated the transportation-related emissions of nitrogen oxides (NOx) at an individual level for a sample of the Montreal population. Using linear regression, we quantified the associations between NOx emissions and selected individual attributes. We then investigated the relationship between individual emissions of NOx and exposure to nitrogen dioxide (NO2) concentrations derived from a land-use regression model. Factor analysis and clustering of land-uses were used to test the relationships between emissions and exposures in different Montreal areas. We observed that the emissions generated per individual are positively associated with vehicle ownership, gender, and employment status. We also noted that individuals who live in the suburbs or in peripheral areas generate higher emissions of NOx but are exposed to lower NO2 concentrations at home and throughout their daily activities. Finally, we observed that for most individuals, NO2 exposures based on daily activity locations were often slightly more elevated than NO2 concentrations at the home location. We estimated that between 20% and 45% of individuals experience a daily exposure that is largely different from the concentration at their home location. Our findings are relevant to the evaluation of equity in the generation of transport emissions and exposure to traffic-related air pollution. We also shed light on the effect of accounting for daily activities when estimating air pollution exposure.  相似文献   

10.
To accurately investigate vehicle emissions that have become major contributors to global air pollutants and greenhouse gases, test conditions have been transferred from laboratory type approval test cycles to real-world driving conditions. In this study, the real-world driving emissions of carbon monoxide (CO), total hydrocarbons (THC), nitrogen oxides (NOx), and carbon dioxide (CO2) from one gasoline and two diesel Euro 6b light-duty passenger vehicles were investigated by a portable emission measurement system (PEMS) in Lyon, France. NOx and CO2 emission controls remain critical to addressing the real-world driving emissions of Euro 6b vehicles. Notably, the tested gasoline vehicle emitted higher CO2 emissions than diesel vehicles on all types of roads, especially on the urban road with an excess of 29.3–48.3%. The highest emission factors of gaseous pollutants generally occurred on the motorway for the gasoline vehicle, while on the urban road for diesel vehicles. In particular, for high-speed driving conditions, the gasoline vehicle gaseous emissions, especially NOx emissions, were more affected by acceleration than diesel vehicle emissions. In addition, the CO emissions, especially THC emissions, for the gasoline vehicle, were more influenced by warm-start, especially cold-start, than those for diesel vehicles.  相似文献   

11.
The paper describes exhaust emission tests performed on a PHEV (Plug-in Hybrid Electric Vehicle) and a BEV (Battery Electric Vehicle), in which the combustion engine was used as a range extender. The measurements of the exhaust emissions were performed for CO2/fuel consumption, CO, THC and NOx. The RDE measurements were performed including the engine operating parameters and emissions analysis. This analysis shows that the engines of BEVs and PHEVs operate in a different parameter range when under actual operating conditions, which directly translates into the exhaust emission values. This is particularly the case for the emission of NOx. The investigations were carried out for two routes differentiated by the length and share of the urban and extra-urban cycles. For both routes, the emission of THC and CO were lower for the PHEV engine – HC by 69% (22 mg/km, route 1) and 6% (15 mg/km, route 2), CO by 69% (0.12 mg/km, route 1) and 80% (0.1 mg/km, route 2). For route 1, characterized by a greater share of the urban cycle, the emission of NOx was lower by 70% (2 mg/km) for the BEV engine, and (route 2) lower by 60% (8 mg/km) for the PHEV engine. Additionally, the curves of the exhaust emissions in time for individual exhaust components have been presented that indicate that in the motorway cycle the emission of THC and CO from the BEV vehicle increases significantly up to ten times compared to urban cycle.  相似文献   

12.
Traffic represents one of the largest sources of primary air pollutants in urban areas. As a consequence, numerous abatement strategies are being pursued to decrease the ambient concentrations of a wide range of pollutants. A mutual characteristic of most of these strategies is a requirement for accurate data on both the quantity and spatial distribution of emissions to air in the form of an atmospheric emissions inventory database. In the case of traffic pollution, such an inventory must be compiled using activity statistics and emission factors for a wide range of vehicle types. The majority of inventories are compiled using ‘passive’ data from either surveys or transportation models and by their very nature tend to be out-of-date by the time they are compiled. Current trends are towards integrating urban traffic control systems and assessments of the environmental effects of motor vehicles. In this paper, a methodology for estimating emissions from mobile sources using real-time data is described. This methodology is used to calculate emissions of sulphur dioxide (SO2), oxides of nitrogen (NOx), carbon monoxide (CO), volatile organic compounds (VOC), particulate matter less than 10 μm aerodynamic diameter (PM10), 1,3-butadiene (C4H6) and benzene (C6H6) at a test junction in Dublin. Traffic data, which are required on a street-by-street basis, is obtained from induction loops and closed circuit televisions (CCTV) as well as statistical data. The observed traffic data are compared to simulated data from a travel demand model. As a test case, an emissions inventory is compiled for a heavily trafficked signalized junction in an urban environment using the measured data. In order that the model may be validated, the predicted emissions are employed in a dispersion model along with local meteorological conditions and site geometry. The resultant pollutant concentrations are compared to average ambient kerbside conditions measured simultaneously with on-line air quality monitoring equipment.  相似文献   

13.
Several monitoring and surveys on ambient concentration of oxides of nitrogen (NOx), lead (Pb), particulate matter (PM), carbon monoxide (CO) and black smoke have been carried out by the author, Bangladesh Atomic Energy Commission (BAEC), Department of Civil Engineering, Bangladesh University of Engineering and Technology (BUET), and Department of Environment (DOE), Bangladesh Government at different street intersections of metropolitan Dhaka. In addition, all traffic pollutant concentrations at 82 street intersections were estimated using the Gaussian Plume Model. The surveys and the analysis were undertaken primarily to provide an independent check on the pollutant concentration and to determine if there is any violation of the international compliance. The study covers, for the first time in its type, wide areas of road intersections and surveyed concentration of oxides of nitrogen. It has been observed that the concentration of NOx, black smoke, lead, and PM violate both the national and international standards in metropolitan Dhaka. In addition, the concentration of CO is found relatively higher during the noon buildups.  相似文献   

14.
In 2008 the regional government of Catalonia (Spain) reduced the maximum speed limit on several stretches of congested urban motorway in the Barcelona metropolitan area to 80 km/h, while in 2009 it introduced a variable speed system on other stretches of its metropolitan motorways. We use the differences-in-differences method, which enables a policy impact to be measured under specific conditions, to assess the impact of these policies on emissions of NOx and PM10. Empirical estimation indicate that reducing the speed limit to 80 km/h causes a 1.7–3.2% increase in NOx and 5.3–5.9% in PM10. By contrast, the variable speed policy reduced NOx and PM10 pollution by 7.7–17.1% and 14.5–17.3%. As such, a variable speed policy appears to be a more effective environmental policy than reducing the speed limit to a maximum of 80 km/h.  相似文献   

15.
NOX emission rates of 13 petrol and 3 diesel passenger cars as a function of average speed from 10 to 120 km/h, emission class (pre-Euro 1 – Euro 5), engine type were investigated by on-board monitoring on roads and highways of St. Petersburg using a portative Testo XXL 300 gas analyzer. The highest level of NOX emission 0.5–2.5 g/km was inherent to old pre-Euro 1 petrol cars without a catalytic converter. NOX emissions rates of Euro 1 and Euro 2 petrol cars changed within 0.15–0.9 g/km, Euro 3 – 0.015–0.27 g/km, Euro 4 – 0.013–0.1 g/km, Euro 5 – 0.002–0.043 g/km. Euro 3 – Euro 4 petrol cars generally satisfied corresponding NOX Emission Standards (ES), except cold-start period, Euro 5 petrol cars did not exceed ES. Warmed, stabilized engines of Euro 3 – Euro 5 petrol cars showed 5–10 times lower NOX emission rates than corresponding ES in the range of speed from 20 to 90 km/h. NOX emission rates of diesel Euro 3 and Euro 4 cars varied from 0.45 to 1.1 g/km and from 0.31 to 1.1 g/km, respectively. Two examined diesel Euro 3 and one Euro 4 passenger vehicles did not satisfy NOX ES at real use. Euro 3 diesel cars showed 28.9 times higher NOX emissions than Euro 3 petrol cars and Euro 4 diesel car demonstrated 17.6 times higher NOX emissions than Euro 4 petrol cars at warmed and stabilized engine at a cruise speed ranging from 30 to 60 km/h.  相似文献   

16.
Vehicle border crossings between Mexico and the United States generate significant amounts of air pollution, which can pose health threats to personnel at the ports of entry (POEs) as well as drivers, pedestrians, and local inhabitants. Although these health risks could be substantial, there is little previous work quantifying detailed emission profiles at POEs. Using the Mariposa POE in Nogales, Arizona as a case study, light-duty and heavy-duty vehicle emissions were analyzed with the objective of identifying effective emission reduction strategies such as inspection streamlining, physical infrastructure improvements, and fuel switching. Historical traffic information as well as field data were used to establish a simulation model of vehicle movement in VISSIM. Four simulation scenarios with varied congestion levels were considered to represent real-world seasonal changes in traffic volume. Four additional simulations captured varying levels of expedited processing procedures. The VISSIM output was analyzed using the EPA’s MOVES emission simulation software for conventional air pollutants. For the highest congestion scenario, which includes a 200% increase in vehicle volume, total emissions increase by around 460% for PM2.5 and NOx, and 540% for CO, SO2, GHGs, and NMHC over uncongested conditions for a two-hour period. Expedited processing and queue reduction can reduce emissions in this highest congestion scenario by as much as 16% for PM2.5, 18% for NOx, 20% for NMHC, 7% for SO2 and 15% for GHGs and CO. Other potential mitigation strategies examined include fleet upgrades, fuel switching, and fuel upgrades. Adoption of some or all of these changes would not only reduce emissions at the Mariposa POE, but would have air-quality benefits for nearby populations in both the US and Mexico. Fleet-level changes could have far-reaching improvements in air quality on both sides of the border.  相似文献   

17.
Photocatalytic pavement has attracted significant interest in the past decades by both the academia and industry for its ability of spontaneous cleaning of air pollutants, such as motor vehicle exhaust gas. Titanium dioxide (TiO2) is used as the photocatalyst that is mixed into pavement materials or coated on the pavement to remove motor vehicle exhaust gases, e.g., carbon monoxide (CO), nitrogen oxides (NOx), under the irradiation of the solar light. However, the pure TiO2 additive only absorbs the light within the ultraviolet region due to its large bandgap. One approach to increase the ability of TiO2 to the utilization of the full spectrum of the solar light is doping TiO2. Therefore, this visible-solar-light-driven photocatalytic pavement embedded with doped-TiO2 will exhibits a better cleaning efficiency of exhaust gas. This work conducted computational simulations of the cleaning efficiency on reducing exhaust gas NO2 by photocatalytic pavement with doped-TiO2, and its subsequent influence on the air quality in the surrounding environment. A three-dimensional model was developed for a section of pavement and its vicinal region. Effects of weather conditions, doped-TiO2 coverages, road widths and traffic flow conditions on the removal of NO2 and its influence to the adjacent environment were studied. Results indicate that visible-solar-light-driven photocatalytic pavement with doped-TiO2 features a significantly higher removal efficiency of exhaust gas compared with the normal photocatalytic pavement. Moreover, the doped-TiO2 embedded pavement is effective to remove NO2 with different traffic densities and wind conditions, and consequently improve the air quality of the surrounding environment.  相似文献   

18.
The impact of diesel vehicles on NOx and PM emissions at various locations in Delhi is assessed using two line source models; the California line source version 4 and the Indian Institute of Technology Line Source. The models offer comparable results but both under predicting the observed values with the Indian Institute of Technology model predictions being slightly better. The analysis also identifies hotspots due to concentrations of NOx and PM and their diurnal variations is found to be greater in at night hours.  相似文献   

19.
The effects of small roundabouts on emissions and fuel consumption were evaluated using the “car-following” method in a before/after study. The results showed that at a roundabout replacing a signalised junction, CO emissions decreased by 29%, NOx emissions by 21% and fuel consumption by 28%. At roundabouts, replacing yield regulated junctions, CO emissions increased on average by 4%, NOx emissions by 6% and fuel consumption by 3%. The results indicate that the large reductions in emissions and fuel consumption at one rebuilt signalised junction can “compensate for” the increase produced by several yield-regulated junctions rebuilt as roundabouts.  相似文献   

20.
The paper examines the effects of coordinated traffic lights on CO and C6H6 roadside concentrations in an urban area of Palermo in Southern Italy. Traffic loop detectors and one pollution-monitoring are used to collect data for use in DRACULA traffic microsimulator software. CO and C6H6 roadside concentrations associated with varying cycle and offset times of the coordinated traffic lights are estimated using a neural network. Two functions were set up describing the relations of pollutant concentrations in term of cycle and offset time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号