首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 936 毫秒
1.
基于多体动力学软件UM建立了CRH2型车的多体动力学模型,分析了不同工况下车辆运行的平稳性,研究了悬挂参数对平稳性的影响.仿真分析表明:车辆平稳性指标随着运行速度增大而增大;减小空气弹簧水平刚度可改善横向平稳性,适当降低一、二系垂向刚度和二系垂向阻尼有利于提高垂向平稳性.  相似文献   

2.
基于多体系统动力学理论,利用多体动力学软件建立了某型高速车辆系统动力学模型,对比分析了不同轮轨耦合作用下车辆系统的振动响应,计算得到了两种轮对的非线性临界速度,并合理选取了六种典型线路工况,研究了不同轮轨耦合作用对车辆系统动力学性能的影响.结果表明:轮对弹性变形使车辆系统的非线性临界速度降低,并降低了车辆系统与无质量轨、移动质量轨耦合下的脱轨系数、轮轨横向力和轮轴横向力等动力学指标,但与柔性轨道耦合时,上述动力学指标却升高;当车辆系统与无质量轨耦合时,轮对弹性变形使车体Sperling平稳性指数在横向上最大增幅为5.3%,而在垂向上最大增幅仅为0.7%.  相似文献   

3.
以多刚体系统动力学原理为基础,建立了具有利诺尔减振器的构架式转向架的非线性数学模型,并以罐车为例,研究了转向架关键参数对车辆系统的运动稳定性、曲线通过性能及运行平稳性的影响.计算结果表明:转向架参数的优选和合理匹配极大地影响着车辆的动力学性能.为使车辆系统具有较高的蛇行失稳临界速度,在满足曲线通过性能的条件下,可以适当提高轴箱弹簧刚度和旁承摩擦力矩,并尽量降低旁承的纵向间隙.  相似文献   

4.
运用多体系统动力学软件SIMPACK建立了铰接式直接驱动转向架的车辆系统动力学模型,通过仿真计算分析了三角杆纵向刚度和横向刚度与车辆临界速度的关系,并对二系悬挂垂向刚度和垂向阻尼的参数进行了优选.最后分析了整车曲线通过性,结果表明直接驱动转向架具有良好的动力学性能,能满足运行的需要.  相似文献   

5.
车辆系统空气弹簧失气安全性分析   总被引:1,自引:0,他引:1  
建立了具有刚度衰变特性的空气弹簧失气模型和非线性粘滑接触模型,结合车辆系统动力学,模拟空气弹簧失气动态过程与失气后的应急状态,分析了空气弹簧失气后车辆系统的稳定性与空气弹簧突然失气对车辆动力学性能的影响,研究了不同失气过程时长、运行速度与曲线通过工况下空气弹簧失气车辆的安全性。计算结果表明:空气弹簧失气后车辆临界速度由623km.h-1大幅降低为351km.h-1。空气弹簧突然失气导致轮轨垂向力减小,轮重减载率增大,且失气过程越短,轮重减载率越大,失气过程为0.2s时轮重减载率达到0.651。车辆运行速度低于300km.h-1时,车速对轮重减载率和轮轨力影响不明显,当大于300km.h-1时,减载率随车速增大迅速增大。车辆通过曲线时,在圆曲线上失气最危险,轮重减载率最大为0.652。  相似文献   

6.
牵引杆附加刚度效应对地铁车辆垂向动力学性能的影响   总被引:1,自引:0,他引:1  
为了解决地铁车辆踏面过度磨耗、剥离、失圆及产生的车体垂向动力学性能超标问题,通过车辆结构理论分析及动力学仿真,研究了牵引杆的附加刚度效应.结果表明:车辆制动系统不是导致上述问题发生的主要原因,短牵引杆及其两端大的连接刚度引起的附加刚度效应是导致车体对垂向振动冲击敏感的根源;在车辆制动或通过曲线轨道时,牵引杆装置的附加刚度效应可降低二系悬挂系统的隔振能力;考虑牵引杆的附加刚度效应时,车辆对垂向振动的冲击响应显著增大;将牵引杆的连接刚度减小到现有刚度的25%时,可以降低车体对垂向冲击的响应,改善车辆的垂向动力学性能.  相似文献   

7.
胶轮驱动的跨座式单轨车辆在冰雪天运行时走行轮易打滑,影响车辆安全行驶.为解决该问题,设计了直线电机驱动跨座式单轨车辆方案,建立了直线电机跨座式单轨车辆动力学模型,分析了不同悬挂参数下车辆的气隙稳定性和运行平稳性.结果 表明:支撑轮刚度和橡胶弹簧刚度对电机气隙影响很大,但支撑轮刚度和橡胶弹簧刚度对车辆运行平稳性影响很小.  相似文献   

8.
研究轨道车辆在运行状态下,刚柔耦合建模方式的车辆系统对动力学性能的影响程度.以某型高速动车组拖车为研究对象,基于SIMPACK多体动力学软件分别建立多刚体车辆模型和由柔性轮对、柔性构架以及柔性车体结构耦合的刚柔耦合车辆模型,通过对两者在不同运行速度和不同运行线路工况仿真计算的结果进行对比,从而评价采用刚柔耦合建模方式对动力学性能方面的影响.结果表明:对比多刚体车辆计算结果,刚柔耦合车辆整体上在稳定性、运行品质和曲线通过性能等指标结果表现较差,尤其在高速运行状态下,刚柔耦合车辆在垂向方向上影响更加剧烈.  相似文献   

9.
对多模块铰接式车体的曲线通过进行了仿真分析与试验.分析了多模块铰接式车辆的架构和主要技术参数,利用MSC ADAMS多体系统动力学软件分析车辆在15 m最小平曲线半径、S型曲线及最小缓和曲线半径(R=200 m)爬坡(坡度13%)工况下结构运动自由度及结构部件之间的干涉情况,并计算铰接位置的相对运动转角;利用1:1的模型车进行曲线通过验证,确认车体满足车辆运行需求.将仿真分析与试验结果对比,确认仿真计算与试验情况相符.  相似文献   

10.
针对城市轨道交通弓网系统,为研究各种受电弓、接触网仿真模型的适用性,建立了受电弓的归算质量模型、多刚体模型和刚性接触网的等效梁结构模型、变刚度弹簧模型.组合不同的受电弓与接触网模型,通过弓网耦合系统动力学仿真,得到弓网系统的动力学性能.研究结果表明:在低速运行条件下,不同受电弓模型匹配同一接触网时受流性能差别不大,不同模型间接触力标准差变动范围不超过10 N;随着速度的提升,不同模型的受流性能差异渐趋明显,各模型接触力标准差变化超过80 N;当与跨距通过频率及其倍频相匹配的弓网系统固有频率、振型不同时,各受电弓模型受流性能发生变化,速度拐点出现;仿真结果和试验数据对比分析进一步表明,由于考虑了上框架的弹性贡献,受电弓三质量模型有更好的适应性.  相似文献   

11.
建立了考虑左右空气弹簧垂向耦合模型的车辆系统数学模型,由理想气体的状态方程得到空气弹簧的力学方程,分析了车辆通过曲线时车辆与空气弹簧的动态特性。仿真结果表明:由于高度阀的动作,车辆在驶出曲线后各空气弹簧的压力不一致,导致车体不能回到静平衡位置;车辆以正常速度通过曲线时,车辆曲线通过动力学性能变化不大;在车辆多次通过同一种曲线的较恶劣工况时,空气弹簧内气压变化范围是一定的;增加抗侧滚刚度能明显抑制车体侧滚,从而减小空气弹簧内气压的变化量;增大空气弹簧横向跨距,并选择合适的刚度和阻尼,能使车辆驶出曲线后各空气弹簧压力接近静平衡值。  相似文献   

12.
基于联合仿真的汽车操纵稳定性分析及控制研究   总被引:1,自引:1,他引:0  
将多体系统动力学与模糊控制理论相结合对汽车稳定性控制(VDC)系统进行了研究.基于ADAMS/CAR建立整车多体动力学模型;研究汽车在不同行驶工况下,行驶稳定性参数的变化;利用Matlab/Simulink模糊控制工具箱建立稳定性模糊控制策略:通过ADAMS与Matlab间的数据接口将控制系统与整车动力学模型结合,对带...  相似文献   

13.
基于虚拟试验场技术的越野车辆地形通过性评价系统   总被引:1,自引:0,他引:1  
为了评价越野车辆的地形通过性,建立了基于虚拟试验场技术的评价系统.基于轮胎内压和轮胎刚度与有效接地面积基本成线性的关系,用试验系数对建立的轮胎粘弹性有限元模型进行了修正.研究了悬架的刚度-阻尼模型,并以多体动力学理论建立了车辆的6自由度动力学模型.以车轮六分力传感器和机器视觉测量方法建立了评价仿真模型的标定和验证硬件平台,并对实车试验与评价系统的仿真结果进行对比.对比结果表明:仿真与试验结果的干涉误差在5%以内,因此,评价系统可信.  相似文献   

14.
高速列车弹性车体与转向架耦合振动分析   总被引:1,自引:0,他引:1  
建立了某高速列车车体有限元模型,采用Guyan缩减进行模态求解,结合SIMPACK多体动力学软件建立包含弹性车体的系统动力学模型。运用模型分析了车体弹性模态对运行平稳性的影响,研究了弹性车体与转向架构架垂向耦合振动。分析结果表明:当车体垂向一阶弯曲频率与车体点头振动空响应点频率接近时,会发生车体的垂向弹性共振;当车体菱...  相似文献   

15.
侧风下高速列车车体与轮对的运行姿态   总被引:3,自引:0,他引:3  
应用流体动力学理论,建立了高速列车空气动力学模型,计算了作用于高速列车车体上的气动力和气动力矩;应用多体动力学理论,建立了车辆系统动力学模型,分析了在不同风向角、侧偏角与合成风速下高速列车头车车体和轮对的运行姿态。计算结果表明:在不同侧风环境下,头车车体始终向背风侧横摆和侧滚;当风向角为90°时,车体的横向位移和侧滚角最大;当列车车速为350 km.h-1,侧风风速分别为13.8、32.6 m.s-1时,列车头车车体最大横向位移分别为74.2、171.7 mm,最大侧滚角分别为3.1°和8.4°;当列车车速为200 km.h-1,风速不小于32.6 m.s-1,且风向角为90°时,列车头车一、二位轮对均向背风侧横移,背风侧车轮易发生爬轨现象,三、四位轮对均向迎风侧横移,三位轮对迎风侧车轮易发生爬轨现象;四位轮对的横移量和摇头角均小于前三位轮对,相对安全。  相似文献   

16.
复兴号CR400BF高速动车组动力转向架的牵引电机采用特有的四点弹性架悬方式, 在电机和构架之间安装有横向液压减振器和横向止挡, 首次采用牵引电机作为动力吸振器来控制转向架蛇行运动稳定性和蛇行频率, 从而避免引起车体弹性模态共振; 考虑悬挂参数和轮轨接触非线性, 建立了复兴号动车组非线性多刚体动力学仿真模型, 通过悬挂模态计算和动力学时域仿真, 分析了关键参数对动车蛇行运动的影响规律; 基于将电机作为动力吸振器的原理, 优化了电机节点横向刚度和横向减振器阻尼; 考虑动车组运营中的轮轨匹配随机因素, 组合400种轮轨随机匹配状态, 仿真分析了动车的动力学性能; 开展动车组长期线路动力学跟踪试验, 研究了动力转向架蛇行运动演变规律。仿真与试验结果表明: 牵引电机弹性架悬下的构架横向加速度频谱图从以蛇行频率为主频的单峰值变化为主频在蛇行频率两侧的双峰值, 说明电机起到了动力吸振器的作用; 将电机作为动力吸振器能够提高动车蛇行运动稳定性, 具有不同等效锥度的典型轮轨匹配下非线性临界速度超过500 km·h-1; 动车蛇行运动最高频率被控制在6 Hz附近, 远离车体中部菱形弹性模态频率8.5 Hz, 避免了转向架蛇行运动激起车体弹性共振; 动车组在轨道随机不平顺激扰下, 构架端部横向加速度小于0.5g, 平稳性指标小于2.5, 轮轴横向力和脱轨系数等运行安全性指标满足要求。   相似文献   

17.
为了优化坡道上钢弹簧浮置板轨道的设计, 在考虑轮轨纵向作用关系与钢弹簧浮置板轨道特点的基础上, 运用多体动力学理论和有限元法建立了紧急制动条件下地铁车辆与钢弹簧浮置板轨道动力相互作用模型, 利用多体动力学软件UM验证了模型的有效性, 分析了车辆与轨道的动力响应。研究结果表明: UM软件与本文模型计算得到的车体纵向加速度和轮轨纵向力平均相对误差分别为1.3%、2.8%;在紧急制动过程中, 车体始终处于向前点头和纵向振动的状态, 导致前轮增载, 后轮减载; 由于板与板之间不连续, 钢轨和浮置板之间会产生纵向相对错动, 须注意钢轨与浮置板之间不协调的纵向变形; 间隔2组扣件布置一对隔振器方案(方案1) 所得板端钢轨垂向位移比板中大0.2 mm, 间隔2组扣件布置一对隔振器, 再间隔3组扣件布置一对隔振器方案(方案2) 所得板端钢轨垂向位移比板中小0.5 mm; 2种布置方案下, 轨道纵向变形相差不超过5%, 扣件和钢弹簧受到的纵向作用力相差不超过15%;短波轨道不平顺显著加剧了钢轨和浮置板的垂向振动效应, 不平顺状态下钢轨最大垂向加速度可达15g左右; 钢弹簧浮置板轨道可以降低传递到基础底部的垂向振动, 加速度降幅约为0.2 m·s-2, 但会显著放大低频段钢轨、浮置板的垂向振动, 振动量增幅约为15 dB。   相似文献   

18.
高速列车的稳定性   总被引:11,自引:5,他引:6  
为了研究列车中各车辆在直线上和大半径圆曲线上的蛇行稳定性,建立了具有17个自由度的车辆系统非线性数学模型。模型中考虑了车钩力横向分力的作用,根据列车运行阻力确定各车辆(动车或拖车)的车钩力,其是列车速度和车辆在列车中位置的函数,列车编组共考虑了2M9T、3M8T和6M5T三种形式。应用牛顿一拉夫森达代法确定车辆系统的平衡位置,采用QR算法求解系统雅可比矩阵的特征值,并结合二分法搜索系统平衡位置失稳时的临界速度。通过计算得知,在直线上列车中各车辆的临界速度相差不大,但在曲线上有一定的差别,车辆在曲线上的临界速度要低于直线上的临界速度,曲线半径越小,其临界速度越低,因此进行曲线上的临界速度计算时,必须考虑车钩力的影响。  相似文献   

19.
用离散梁法建立钢板弹簧的动力学模型,采用ADAMS/Insight分析动力学参数对钢板弹簧刚度的影响,应用ADAMS/View中的Optimization实现对钢板弹簧的弹性模量和绕Y轴的转动惯量等动力学参数的修正,最终通过仿真分析完成对钢板弹簧刚度的优化。对优化前、后的刚度曲线和理论曲线进行对比分析,验证了模型的有效性,为整车动力学模型的建立和仿真分析奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号