首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 168 毫秒
1.
2.
This article proposes Δ-tolling, a simple adaptive pricing scheme which only requires travel time observations and two tuning parameters. These tolls are applied throughout a road network, and can be updated as frequently as travel time observations are made. Notably, Δ-tolling does not require any details of the traffic flow or travel demand models other than travel time observations, rendering it easy to apply in real-time. The flexibility of this tolling scheme is demonstrated in three specific traffic modeling contexts with varying traffic flow and user behavior assumptions: a day-to-day pricing model using static network equilibrium with link delay functions; a within-day adaptive pricing model using the cell transmission model and dynamic routing of vehicles; and a microsimulation of reservation-based intersection control for connected and autonomous vehicles with myopic routing. In all cases, Δ-tolling produces significant benefits over the no-toll case, measured in terms of average travel time and social welfare, while only requiring two parameters to be tuned. Some optimality results are also given for the special case of the static network equilibrium model with BPR-style delay functions.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
A modelling framework is developed to analyze the effect of in-vehicle real time information strategies on the performance of a congested traffic communing corridor. The framework consists of a special-purpose simulation component and a user decisions component that determines users' responses to the supplied information. The user decisions component is microscopic and determines individual commuters' route switching, at any node of the network, as a function of the supplied information. The traffic simulation component moves vehicles in bundles or macroparticles at the prevailing local speeds, as determined by macroscopic traffic relations. The framework allows the investigation of system performance under alternative behavioral response mechanisms, as well as under different information strategies. Results are presented for simulation experiments in a commuting corridor with a special network structure that simplifies the network computations. The results illustrate the effect of the fraction of users equipped with in-vehicle navigation systems on overall system performance. In addition, alternative assumptions on user response reflecting varying degrees of optimizing behavior are explored. The modelling framework is shown to provide a useful approach for addressing key questions of interest in the design of real time in-vehicle information system.  相似文献   

11.
12.
13.
14.
15.
The aim of this work is to test the application of a method for making a qualitative evaluation of pedestrian crossings, based on the methodology of Khisty (Transportation Research Record 1438:45–50, 1994). The study identifies the Performance Measures (Comfort, Safety, System Continuity), with their respective attributes (waiting time, space available while waiting to cross, number of pedestrians, one-way or two-way street, state of the road surface, road width, vehicle speed, visibility, lighting conditions, guardrails, absence of obstacles in vicinity, state of sidewalks, lowered kerb, pedestrian signals, central island), which may be utilized in the evaluation. The first step was to ascertain the relative importance, from the point of view of the pedestrian, of the Performance Measures employed. Then the level-of-service (LOS), as perceived by the users, was determined for each of the pedestrian crossings in the survey, on the basis of the users’ level of satisfaction with each attribute. Khisty’s methodology makes it possible to relate the overall level of satisfaction with a qualitative LOS for the pedestrian facility under analysis. The chosen methodology was adapted to the Brazilian context, in a case study carried out in the city of São Paulo (Brazil), in collaboration with the local Traffic Engineering Corporation (Companhia de Engenharia de Tráfego, CET-SP). To this end, four pedestrian crossings at road junctions with traffic lights were analysed. The qualitative LOS obtained were compared to the quantitative LOS, calculated according to the Highway Capacity Manual (TRB 2000).  相似文献   

16.
17.
18.
19.
Dynamic traffic routing refers to the process of (re)directing vehicles at junctions in a traffic network according to the evolving traffic conditions. The traffic management center can determine desired routes for drivers in order to optimize the performance of the traffic network by dynamic traffic routing. However, a traffic network may have thousands of links and nodes, resulting in a large-scale and computationally complex non-linear, non-convex optimization problem. To solve this problem, Ant Colony Optimization (ACO) is chosen as the optimization method in this paper because of its powerful optimization heuristic for combinatorial optimization problems. ACO is implemented online to determine the control signal – i.e., the splitting rates at each node. However, using standard ACO for traffic routing is characterized by four main disadvantages: 1. traffic flows for different origins and destinations cannot be distinguished; 2. all ants may converge to one route, causing congestion; 3. constraints cannot be taken into account; and 4. neither can dynamic link costs. These problems are addressed by adopting a novel ACO algorithm with stench pheromone and with colored ants, called Ant Colony Routing (ACR). Using the stench pheromone, the ACR algorithm can distribute the vehicles over the traffic network with less or no traffic congestion, as well as reduce the number of vehicles near some sensitive zones, such as hospitals and schools. With colored ants, the traffic flows for multiple origins and destinations can be represented. The proposed approach is also implemented in a simulation-based case study in the Walcheren area, the Netherlands, illustrating the effectiveness of the approach.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号