共查询到20条相似文献,搜索用时 0 毫秒
1.
From a capacity perspective, efficient utilization of a railway corridor has two main objectives; avoidance of schedule conflicts, and finding a proper balance between capacity utilization and level of service (LOS). There are several timetable tools and commercial rail simulation packages available to assist in reaching these objectives, but few of them offer both automatic train conflict resolution and automatic timetable management features for the different types of corridor configurations. This research presents a new rescheduling model to address some of the current limitations. The multi-objective linear programming (LP) model is called “Hybrid Optimization of Train Schedules” (HOTS), and it works together with commercial rail simulation tools to improve capacity utilization or LOS metrics. The HOTS model uses both conflict resolution and timetable compression techniques and is applicable to single-, double-, and multiple-track corridors (N-track networks), using both directional and bi-directional operations. This paper presents the approach, formulation and data requirements for the HOTS model. Single and multi-track case studies test and demonstrate the model’s train conflict resolution and timetable compression capabilities, and the model’s results are validated by using RailSys simulation package. The HOTS model performs well in each tested scenario, providing comparable results (either improved or similar) to the commercial packages. 相似文献
2.
Train dispatching is vital for the punctuality of train services, which is critical for a train operating company (TOC) to maintain its competitiveness. Due to the introduction of competition in the railway transport market, the issue of discrimination is attracting more and more attention. This paper focuses on delivering non-discriminatory train dispatching solutions while multiple TOCs are competing in a rail transport market, and investigating impacting factors of the inequity of train dispatching solutions. A mixed integer linear programming (MILP) model is first proposed, in which the inequity of competitors (i.e., trains and TOCs) is formalized by a set of constraints. In order to provide a more flexible framework, a model is further reformulated where the inequity of competitors is formalized as the maximum individual deviation of competitors’ delay cost from average delay cost in the objective function. Complex infrastructure capacity constraints are considered and modelled through a big M-based approach. The proposed models are solved by a standard MILP solver. A set of comprehensive experiments is conducted on a real-world dataset adapted from the Dutch railway network to test the efficiency, effectiveness, and applicability of the proposed models, as well as determine the trade-off between train delays and delay equity. 相似文献
3.
Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach 总被引:1,自引:0,他引:1
After a major service disruption on a single-track rail line, dispatchers need to generate a series of train meet-pass plans at different decision times of the rescheduling stage. The task is to recover the impacted train schedule from the current and future disturbances and minimize the expected additional delay under different forecasted operational conditions. Based on a stochastic programming with recourse framework, this paper incorporates different probabilistic scenarios in the rolling horizon decision process to recognize (1) the input data uncertainty associated with predicted segment running times and segment recovery times and (2) the possibilities of rescheduling decisions after receiving status updates. The proposed model periodically optimizes schedules for a relatively long rolling horizon, while selecting and disseminating a robust meet-pass plan for every roll period. A multi-layer branching solution procedure is developed to systematically generate and select meet-pass plans under different stochastic scenarios. Illustrative examples and numerical experiments are used to demonstrate the importance of robust disruption handling under a dynamic and stochastic environment. In terms of expected total train delay time, our experimental results show that the robust solutions are better than the expected value-based solutions by a range of 10-30%. 相似文献
4.
Based on train scheduling, this paper puts forward a multi-objective optimization model for train routing on high-speed railway network, which can offer an important reference for train plan to provide a better service. The model does not only consider the average travel time of trains, but also take the energy consumption and the user satisfaction into account. Based on this model, an improved GA is designed to solve the train routing problem. The simulation results demonstrate that the accurate algorithm is suitable for a small-scale network, while the improved genetic algorithm based on train control (GATC) applies to a large-scale network. Finally, a sensitivity analysis of the parameters is performed to obtain the ideal parameters; a perturbation analysis shows that the proposed method can quickly handle the train disturbance. 相似文献
5.
In the urban subway transportation system, passengers may have to make at least one transfer traveling from their origin to destination. This paper proposes a timetable synchronization optimization model to optimize passengers’ waiting time while limiting the waiting time equitably over all transfer station in an urban subway network. The model aims to improve the worst transfer by adjusting the departure time, running time, the dwelling time and the headways for all directions in the subway network. In order to facilitate solution, we develop a binary variables substitute method to deal with the binary variables. Genetic algorithm is applied to solve the problem for its practicality and generality. Finally, the suggested model is applied to Beijing urban subway network and several performance indicators are presented to verify the efficiency of suggested model. Results indicate that proposed timetable synchronization optimization model can be used to improve the network performance for transfer passengers significantly. 相似文献
6.
Timetable design is crucial to the metro service reliability. A straightforward and commonly adopted strategy in daily operation is a peak/off-peak-based schedule. However, such a strategy may fail to meet dynamic temporal passenger demand, resulting in long passenger waiting time at platforms and over-crowding in trains. Thanks to the emergence of smart card-based automated fare collection systems, we can now better quantify spatial–temporal demand on a microscopic level. In this paper, we formulate three optimization models to design demand-sensitive timetables by demonstrating train operation using equivalent time (interval). The first model aims at making the timetable more dynamic; the second model is an extension allowing for capacity constraints. The third model aims at designing a capacitated demand-sensitive peak/off-peak timetable. We assessed the performance of these three models and conducted sensitivity analyzes on different parameters on a metro line in Singapore, finding that dynamical timetable built with capacity constraints is most advantageous. Finally, we conclude our study and discuss the implications of the three models: the capacitated model provides a timetable which shows best performance under fixed capacity constraints, while the uncapacitated model may offer optimal temporal train configuration. Although we imposed capacity constraints when designing the optimal peak/off-peak timetable, its performance is not as good as models with dynamical headways. However, it shows advantages such as being easier to operate and more understandable to the passengers. 相似文献
7.
In passenger railway operations, unforeseen events require railway operators to adjust their timetable and their resource schedules. The passengers will also adapt their routes to their destinations. When determining the new timetable and rolling stock schedule, the railway operator has to take passenger behavior into account. The operator should increase the capacity of trains for which the operator expects more demand than on a regular day. Furthermore, the operator could increase the frequency of the trains that serve stations with an additional demand.This paper describes a real-time disruption management approach which integrates the rescheduling of the rolling stock and the timetable by taking the changed passenger demand into account. The timetable decisions are limited to additional stops of trains at stations at which they normally would not call. Several variants of the approach are suggested, with the difference in how to determine which additional stops should be executed.Real-time rescheduling requires fast solutions. Therefore a heuristic approach is used. We demonstrate the performance of the several variants of our algorithm on realistic instances of Netherlands Railways, the major railway operator in the Netherlands. 相似文献
8.
This paper explores at the planning level the benefits of coordinating tram movements and signal timings at controlled intersections. Although trams may have dedicated travel lanes, they mostly operate in a mixed traffic environment at intersections. To ensure tram progression, pre-set signal timings at intersections are adjusted by activating Transit Signal Priority (TSP) actions, which inevitably add delays to the auto traffic. A mixed integer program is proposed for jointly determining tram schedules for a single tram line and modifying signal timings at major controlled intersections. The objective is to minimize the weighted sum of the total tram travel time and TSP’s negative impacts on other traffic. A real-world case study of Line 5 of the Shenyang Hunnan Modern Tramway shows that by extending the dwell time or link travel time we can significantly reduce the TSP’s negative impacts on the auto traffic while only slightly increasing tram travel times. 相似文献
9.
Rail capacity is currently administratively allocated in Europe, whereas the economic literature has often contemplated the opportunity of introducing market mechanisms, auctions in particular, into this industry. This article tries to fill the gap between practice and theory. It first describes the properties of rail capacity (rigidity and non-homogeneity) and shows that because of its very nature, this capacity must be allocated through combinatorial auctions. As identified by the economic literature, using combinatorial auctions introduces a lot of complexity (winner determination and information burden) into the allocation process. To deal with this complexity, some form of centralized planning is necessary to design the right market mechanisms and to allocate capacity. This could have strong consequences on the current deregulation process. 相似文献
10.
This paper proposes a bi-level model to solve the timetable design problem for an urban rail line. The upper level model aims at determining the headways between trains to minimize total passenger cost, which includes not only the usual perceived travel time cost, but also penalties during travel. With the headways given by the upper level model, passengers’ arrival times at their origin stops are determined by the lower level model, in which the cost-minimizing behavior of each passenger is taken into account. To make the model more realistic, explicit capacity constraints of individual trains are considered. With these constraints, passengers cannot board a full train, but wait in queues for the next coming train. A two-stage genetic algorithm incorporating the method of successive averages is introduced to solve the bi-level model. Two hypothetical examples and a real world case are employed to evaluate the effectiveness of the proposed bi-level model and algorithm. Results show that the bi-level model performs well in reducing total passenger cost, especially in reducing waiting time cost and penalties. And the section loading-rates of trains in the optimized timetable are more balanced than the even-headway timetable. The sensitivity analyses show that passenger’s desired arrival time interval at destination and crowding penalty factor have a high influence on the optimal solution. And with the dispersing of passengers' desired arrival time intervals or the increase of crowding penalty factor, the section loading-rates of trains become more balanced. 相似文献
11.
确定合理的高铁车站接车进路长度对压缩到达追踪间隔时间有重要意义。本文首先通过构建满足到达追踪间隔时间的高铁车站接车进路长度计算模型,提出了接车进路长度的主要影响因素为由线路限制速度、站前坡坡度、制动力使用系数三因素(简称三因素)所确定的车载设备监控制动距离内列车运行时间。然后,通过对常见的线路限制速度、站前坡坡度、制动力使用系数取值下的车载设备监控制动距离内列车运行时间进行牵引计算仿真,并运用三因素方差分析法分析了三因素的影响显著度,得到了线路限制速度、站前坡坡度对高铁车站接车进路长度影响显著的结论。最后,基于高铁车站接车进路长度计算模型,得到了一组指定到达追踪间隔下的高铁车站接车进路长度表,为高铁车站设计提供思路。 相似文献
12.
In the operation of urban rails, faults are inevitable, which leads to deviation between the actual timetable and the planned timetable. In nowadays, timetable rescheduling strategies rarely integrate the information of fault handling. In this paper, we develop a real-time automatic rescheduling strategy, which integrates the dynamic information of fault handling. The rescheduled timetable is obtained by a mathematical optimization model, the constraints set of which is automatically generated and adjusted as more information of fault handling is feedback. Compared with the experience-based rescheduling methods, the automatic rescheduling strategy reacts more quickly, and uses the information of fault handling more efficiently. A simulation system for testing the automatic rescheduling strategy is built, which uses the data of the Beijing Yizhuang metro line. Via testing on the simulation system, the effectiveness and efficiency of the automatic rescheduling strategy are validated. 相似文献
13.
This paper investigates an issue for optimizing synchronized timetable for community shuttles linked with metro service. Considering a passenger arrival distribution, the problem is formulated to optimize timetables for multiple community shuttle routes, with the objective of minimizing passenger’s schedule delay cost and transfer cost. Two constraints, i.e., vehicle capacity and fleet size, are modeled in this paper. The first constraint is treated as soft, and the latter one is handled by a proposed timetable generating method. Two algorithms are employed to solve the problem, i.e., a genetic algorithm (GA) and a Frank–Wolfe algorithm combined with a heuristic algorithm of shifting departure times (FW-SDT). FW-SDT is an algorithm specially designed for this problem. The simulated and real-life examples confirm the feasibility of the two algorithms, and demonstrate that FW-SDT outperforms GA in both accuracy and effectiveness. 相似文献
14.
If railway companies ask for station capacity numbers, their underlying question is in fact one about the platformability of extra trains. Train platformability depends not only on the infrastructure, buffer times, and the desired departure and arrival times of the trains, but also on route durations, which depend on train speeds and lengths, as well as on conflicts between routes at any given time. We consider all these factors in this paper. We assume a current train set and a future one, where the second is based on the expected traffic increase through the station considered. The platforming problem is about assigning a platform to each train, together with suitable in- and out-routes. Route choices lead to different route durations and imply different in-route-begin and out-route-end times. Our module platforms the maximum possible weighted sum of trains in the current and future train set. The resulting number of trains can be seen as the realistic capacity consumption of the schedule. Our goal function allows for current trains to be preferably allocated to their current platforms.Our module is able to deal with real stations and train sets in a few seconds and has been fully integrated by Infrabel, the Belgian Infrastructure Management Company, in their application called Ocapi, which is now used to platform existing and projected train sets and to determine the capacity consumption. 相似文献
15.
文章通过分析西江调度的背景,对航道水位和船舶吃水量进行研究,用精确的数学语言做出假设,利用综合调度的内在规律和恰当的数学工具,构造各个量(常量和变量)之间的不等式关系,求解西江黄金水道各港点的船舶签证数和船舶吃水控制,以及各梯级枢纽上下航船舶控制数值,以便对西江黄金水道进行港口、航道、船闸、船舶四位一体的综合调度。 相似文献
16.
17.
An airport bus service, which is newly introduced in a multi-airport region, commonly leads to a gradually increasing market share of airports until a new state of equilibrium is reached. With the goal of speeding up and enlarging the increase in market share, this paper proposes a timetable optimization model by incorporating reactions of airport-loyal passengers to bus service quality. The simulation part of the model, which uses cumulative prospect theory to formulate discrete airport choices, results in predicted passenger demand needed in the optimization part. Then a genetic algorithm for multi-objective optimization problems called NSGA-II is applied to solve the model. To illustrate the model, the “Lukou airport-Wuxi” airport bus in China is taken as an example. The results show that the optimized timetables shorten the cultivation period and impel the market share to grow rapidly. 相似文献
18.
High-speed railway (HSR) systems have been developing rapidly in China and various other countries throughout the past decade; as a result, the question of how to efficiently operate such large-scale systems is posing a new challenge to the railway industry. A high-quality train timetable should take full advantage of the system’s capacity to meet transportation demands. This paper presents a mathematical model for optimizing a train timetable for an HSR system. We propose an innovative methodology using a column-generation-based heuristic algorithm to simultaneously account for both passenger service demands and train scheduling. First, we transform a mathematical model into a simple linear programming problem using a Lagrangian relaxation method. Second, we search for the optimal solution by updating the restricted master problem (RMP) and the sub-problems in an iterative process using the column-generation-based algorithm. Finally, we consider the Beijing–Shanghai HSR line as a real-world application of the methodology; the results show that the optimization model and algorithm can improve the defined profit function by approximately 30% and increase the line capacity by approximately 27%. This methodology has the potential to improve the service level and capacity of HSR lines with no additional high-cost capital investment (e.g., the addition of new tracks, bridges and tunnels on the mainline and/or at stations). 相似文献
19.
This paper presents a model-based multiobjective control strategy to reduce bus bunching and hence improve public transport reliability. Our goal is twofold. First, we define a proper model, consisting of multiple static and dynamic components. Bus-following model captures the longitudinal dynamics taking into account the interaction with the surrounding traffic. Furthermore, bus stop operations are modeled to estimate dwell time. Second, a shrinking horizon model predictive controller (MPC) is proposed for solving bus bunching problems. The model is able to predict short time-space behavior of public transport buses enabling constrained, finite horizon, optimal control solution to ensure homogeneity of service both in time and space. In this line, the goal with the selected rolling horizon control scheme is to choose a proper velocity profile for the public transport bus such that it keeps both timetable schedule and a desired headway from the bus in front of it (leading bus). The control strategy predicts the arrival time at a bus stop using a passenger arrival and dwell time model. In this vein, the receding horizon model predictive controller calculates an optimal velocity profile based on its current position and desired arrival time. Four different weighting strategies are proposed to test (i) timetable only, (ii) headway only, (iii) balanced timetable - headway tracking and (iv) adaptive control with varying weights. The controller is tested in a high fidelity traffic simulator with realistic scenarios. The behavior of the system is analyzed by considering extreme disturbances. Finally, the existence of a Pareto front between these two objectives is also demonstrated. 相似文献
20.
Baibing Li 《Transportation Research Part B: Methodological》2011,45(3):461-473
The multinomial logit model in discrete choice analysis is widely used in transport research. It has long been known that the Gumbel distribution forms the basis of the multinomial logit model. Although the Gumbel distribution is a good approximation in some applications such as route choice problems, it is chosen mainly for mathematical convenience. This can be restrictive in many other scenarios in practice. In this paper we show that the assumption of the Gumbel distribution can be substantially relaxed to include a large class of distributions that is stable with respect to the minimum operation. The distributions in the class allow heteroscedastic variances. We then seek a transformation that stabilizes the heteroscedastic variances. We show that this leads to a semi-parametric choice model which links the linear combination of travel-related attributes to the choice probabilities via an unknown sensitivity function. This sensitivity function reflects the degree of travelers’ sensitivity to the changes in the combined travel cost. The estimation of the semi-parametric choice model is also investigated and empirical studies are used to illustrate the developed method. 相似文献