首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research on connected vehicle environment has been growing rapidly to investigate the effects of real-time exchange of kinetic information between vehicles and road condition information from the infrastructure through radio communication technologies. A fully connected vehicle environment can substantially reduce the latency in response caused by human perception-reaction time with the prospect of improving both safety and comfort. This study presents a dynamical model of route choice under a connected vehicle environment. We analyze the stability of headways by perturbing various factors in the microscopic traffic flow model and traffic flow dynamics in the car-following model and dynamical model of route choice. The advantage of this approach is that it complements the macroscopic traffic assignment model of route choice with microscopic elements that represent the important features of connected vehicles. The gaps between cars can be decreased and stabilized even in the presence of perturbations caused by incidents. The reduction in gaps will be helpful to optimize the traffic flow dynamics more easily with safe and stable conditions. The results show that the dynamics under the connected vehicle environment have equilibria. The approach presented in this study will be helpful to identify the important properties of a connected vehicle environment and to evaluate its benefits.  相似文献   

2.
In real traffic networks, travellers’ route choice is affected by traffic control strategies. In this research, we capture the interaction between travellers’ route choice and traffic signal control in a coherent framework. For travellers’ route choice, a VANET (Vehicular Ad hoc NETwork) is considered, where travellers have access to the real-time traffic information through V2V/V2I (Vehicle to Vehicle/Vehicle to Infrastructure) infrastructures and make route choice decisions at each intersection using hyper-path trees. We test our algorithm and control strategy by simulation in OmNet++ (A network communication simulator) and SUMO (Simulation of Urban MObility) under several scenarios. The simulation results show that with the proposed dynamic routing, the overall travel cost significantly decreases. It is also shown that the proposed adaptive signal control reduces the average delay effectively, as well as reduces the fluctuation of the average speed within the whole network.  相似文献   

3.
Usually, road networks are characterized by their great dynamics including different entities in interactions. This leads to more complex road traffic management. This paper proposes an adaptive multiagent system based on the ant colony behavior and the hierarchical fuzzy model. This system allows adjusting efficiently the road traffic according to the real-time changes in road networks by the integration of an adaptive vehicle route guidance system. The proposed system is implemented and simulated under a multiagent platform in order to discuss the improvement of the global road traffic quality in terms of time, fluidity and adaptivity.  相似文献   

4.
The new generation of GPS-based tolling systems allow for a much higher degree of road sensing than has been available up to now. We propose an adaptive sampling scheme to collect accurate real-time traffic information from large-scale implementations of on-board GPS-based devices over a road network. The goal of the system is to minimize the transmission costs over all vehicles while satisfying requirements in the accuracy and timeliness of the traffic information obtained. The system is designed to make use of cellular communication as well as leveraging additional technologies such as roadside units equipped with WiFi and vehicle-to-vehicle (V2V) dedicated short-range communications (DSRC). As opposed to fixed sampling schemes, which transmit at regular intervals, the sampling policy we propose is adaptive to the road network and the importance of the links that the vehicle traverses. Since cellular communications are costly, in the basic centralized scheme, the vehicle is not aware of the road conditions on the network. We extend the scheme to handle non-cellular communications via roadside units and vehicle-to-vehicle (V2V) communication. Under a general traffic model, we prove that our scheme always outperforms the baseline scheme in terms of transmission cost while satisfying accuracy and real-time requirements. Our analytical results are further supported via simulations based on actual road networks for both the centralized and V2V settings.  相似文献   

5.
Recent studies have demonstrated that Macroscopic Fundamental Diagram (MFD), which provides an aggregated model of urban traffic dynamics linking network production and density, offers a new generation of real-time traffic management strategies to improve the network performance. However, the effect of route choice behavior on MFD modeling in case of heterogeneous urban networks is still unexplored. The paper advances in this direction by firstly extending two MFD-based traffic models with different granularity of vehicle accumulation state and route choice behavior aggregation. This configuration enables us to address limited traffic state observability and to scrutinize implications of drivers’ route choice in MFD modeling. We consider a city that is partitioned in a small number of large-size regions (aggregated model) where each region consists of medium-size sub-regions (more detailed model) exhibiting a well-defined MFD. This paper proposes a route guidance advisory control system based on the aggregated model as a large-scale traffic management strategy that utilizes aggregated traffic states while sub-regional information is partially known. In addition, we investigate the effect of equilibrium conditions (i.e. user equilibrium and system optimum) on the overall network performance, in particular MFD functions.  相似文献   

6.
With rare exception, actual tollroad traffic in many countries has failed to reproduce forecast traffic levels, regardless of whether the assessment is made after an initial year of operation or as long as 10 years after opening. Pundits have offered many reasons for this divergence, including optimism bias, strategic misrepresentation, the promise to equity investors of early returns on investment, errors in land use forecasts, and specific assumptions underlying the traffic assignment models used to develop traffic forecasts. One such assumption is the selection of a behaviourally meaningful value of travel time savings (VTTS) for use in a generalised cost or generalised time user benefit expression that is the main behavioural feature of the traffic assignment (route choice) model. Numerous empirical studies using stated choice experiments have designed choice sets of alternatives as if users choose a tolled route or a free route under the (implied) assumption that the tolled route is tolled for the entire trip. Reality is often very different, with a high incidence of use of a non-tolled road leading into and connecting out of a tolled link. In this paper we recognise this feature of route choice and redesign the stated choice experiment to account for it. Furthermore, this study is a follow up to a previous study undertaken before a new toll road was in place, and it benefits from real exposure to the new toll road. We find that the VTTS is noticeably reduced, and if the VTTS is a significant contributing influence on errors on traffic forecasts, then the lower estimates make sense behaviourally.  相似文献   

7.
The aim of the paper is to evaluate the performance of a new strategy which is able to control dynamic route guidance (DRG) systems, mainly in urban road networks. The purpose of this strategy is to achieve dynamic user equilibrium in the network, even in abnormal network conditions, for example when there is an unexpected increase in traffic volume. It is based on feedback concept and it reacts to the traffic conditions observed in real time by adopting a decentralized structure.A series of experiments was performed, by means of a traffic micro-simulator, in a section of an urban road network. In the situations examined, the results seem to be quite positive. The analyses of the link level show that all of the various travel alternatives to reach the destination become more advantageous for users if DRG devices become more widespread among vehicles. In some cases we observe that the strategy succeeds in maintaining the possible alternatives in equilibrium conditions, by distributing users among the feasible turns. At no point in our investigations do we observe an unstable behaviour of the system, even when the number of vehicles fitted with a DRG device increases.  相似文献   

8.

A large variety of factors influence the route choice decisions of road users, and modelers consider these factors within the perceived utility that road users are assumed to maximize. However, this perceived utility may be different even for the same origin–destination pair and this leads road users to choose different routes for different trips. In this study, we focus on this particular phenomenon of route switching behavior by estimating discrete choice models with the aim of understanding the key factors at its foundation. The estimated route choice models account for route characteristics, socio-economic information, activity based data, inertial mechanism and learning effects, and they are applied to revealed preference data consisting of 677 actual day by day route choices (referred to 77 road users) collected by GPS in Cagliari (Italy). Route switching models were estimated with both fixed and random coefficient models. The model estimation results show that the variables referred to habit and learning have an important relevance on explaining the route switching phenomenon. Specifically, the higher is the travel habit, the less is the propensity of the road users to switch their route. Moreover, the learning effect shows that the accumulation of past experiences has more influence on the choice than the most recent ones.

  相似文献   

9.
A dynamic ‘car-following’ extension of the conventional economic model of traffic congestion is presented, which predicts the average cost function for trips in stationary states to be significantly different from the conventional average cost function derived from the speed-flow function. When applied to a homogeneous road, the model reproduces the same stationary state equilibria as the conventional model, including the hypercongested ones. However, stability analysis shows that the latter are dynamically unstable. The average cost function for stationary state traffic coincides with the conventional function for non-hypercongested traffic, but rises vertically at the road’s capacity due to queuing, instead of bending backwards. When extending the model to include an upstream road segment, it predicts that such queuing will occur under hypercongested conditions, while the general shape of the average cost function for full trips does not change, implying that hypercongestion will not occur on the downstream road segment. These qualitative predictions are verified empirically using traffic data from a Dutch bottleneck. Finally, it is shown that reduced-form average cost functions, that relate the sum of average travel cost and average schedule delay costs to the number of users in a dynamic equilibrium, certainly need not have the intuitive convex shape, but may very well be concave – despite the fact that the underlying speed-flow function may be convex.  相似文献   

10.
This paper explores the effects of queue spillover in transportation networks, in the context of dynamic traffic assignment. A model of spatial queue is defined to characterize dynamic traffic flow and queuing formation in network links. Network users simultaneously choose departure time and travel route to minimize the travel cost including journey time and unpunctuality penalty. Using some necessary conditions of the dynamic user equilibrium, dynamic network flows are obtained exactly on some networks with typical structure. Various effects of queue spillover are discussed based on the results of these networks, and some new paradoxes of link capacity expansion have been found as a result of such effects. Analytical and exact results in these typical networks show that ignoring queuing length may generate biased solutions, and the link storage capacity is a very important factor concerning the performance of networks.  相似文献   

11.
Traditionally, vehicle route planning problem focuses on route optimization based on traffic data and surrounding environment. This paper proposes a novel extended vehicle route planning problem, called vehicle macroscopic motion planning (VMMP) problem, to optimize vehicle route and speed simultaneously using both traffic data and vehicle characteristics to improve fuel economy for a given expected trip time. The required traffic data and neighbouring vehicle dynamic parameters can be collected through the vehicle connectivity (e.g. vehicle-to-vehicle, vehicle-to-infrastructure, vehicle-to-cloud, etc.) developed rapidly in recent years. A genetic algorithm based co-optimization method, along with an adaptive real-time optimization strategy, is proposed to solve the proposed VMMP problem. It is able to provide the fuel economic route and reference speed for drivers or automated vehicles to improve the vehicle fuel economy. A co-simulation model, combining a traffic model based on SUMO (Simulation of Urban MObility) with a Simulink powertrain model, is developed to validate the proposed VMMP method. Four simulation studies, based on a real traffic network, are conducted for validating the proposed VMMP: (1) ideal traffic environment without traffic light and jam for studying the fuel economy improvement, (2) traffic environment with traffic light for validating the proposed traffic light penalty model, (3) traffic environment with traffic light and jam for validating the proposed adaptive real-time optimization strategy, and (4) investigating the effect of different powertrain platforms to fuel economy using two different vehicle platforms. Simulation results show that the proposed VMMP method is able to improve vehicle fuel economy significantly. For instance, comparing with the fastest route, the fuel economy using the proposed VMMP method is improved by up to 15%.  相似文献   

12.
This paper explores the importance of heterogeneity in value of time and route choice when assessing the viability of new road infrastructure to alleviate congestion problems. The model incorporates strategic interaction between road operators in a cost-benefit framework and several competitive regimes are considered. It is then employed to establish the financial and socio-economic viability of a congestion pricing demonstration entering Madrid city centre, where road users have to choose between a free but highly congested road and a priced free-flowing road (semi-private regime). A logit estimation is undertaken with information from a questionnaire among road users in the Eastern Madrid area to obtain users’ value of time and of congestion.The tolls obtained generate a traffic reallocation towards the new roadway such that revenues suffice to render the infrastructure socio-economically viable. The private and the low toll regimes generate similar welfare gains that are close to the first best. Yet the former supposes large losses to users. The low toll and the semi-private regimes do not raise such distributional concerns. However, the low toll regime requires a sufficiently high traffic growth rate to make it financially viable; this does not happen for the other competitive regimes.  相似文献   

13.
This paper reports on real data testing of a real-time freeway traffic state estimator, with a particular focus on its adaptive capabilities. The pursued general approach to the real-time adaptive estimation of complete traffic state in freeway stretches or networks is based on stochastic macroscopic traffic flow modeling and extended Kalman filtering. One major innovative feature of the traffic state estimator is the online joint estimation of important model parameters (free speed, critical density, and capacity) and traffic flow variables (flows, mean speeds, and densities), which leads to three significant advantages of the estimator: (1) avoidance of prior model calibration; (2) automatic adaptation to changing external conditions (e.g. weather and lighting conditions, traffic composition, control measures); (3) enabling of incident alarms. These three advantages are demonstrated via suitable real data testing. The achieved testing results are satisfactory and promising for subsequent applications.  相似文献   

14.
Abstract

This paper reviews the main studies on transit users’ route choice in the context of transit assignment. The studies are categorized into three groups: static transit assignment, within‐day dynamic transit assignment, and emerging approaches. The motivations and behavioural assumptions of these approaches are re‐examined. The first group includes shortest‐path heuristics in all‐or‐nothing assignment, random utility maximization route‐choice models in stochastic assignment, and user equilibrium based assignment. The second group covers within‐day dynamics in transit users’ route choice, transit network formulations, and dynamic transit assignment. The third group introduces the emerging studies on behavioural complexities, day‐to‐day dynamics, and real‐time dynamics in transit users’ route choice. Future research directions are also discussed.  相似文献   

15.
Most of existing route guidance strategies achieves user optimal equilibrium by comparing travel time. Measuring travel time, however, might be uneasy on an urban road network. To contend with the issue, the paper mainly considers easily obtained inflow and outflow of a link and road capacity as input, and proposes a route guidance strategy for a single destination road network based on the determination of free-flow or congested conditions on alternative routes. An extended strategy for a complex network and a feedback approximation for avoiding forecast are further explored. Weaknesses of the strategy are also explicitly analyzed. To test the strategy, simulation investigations are conducted on two networks with multiple parallel routes. The results indicate that the strategy is able to provide stable splitting rates and to approximate user optimal equilibrium in different conditions, in particular when traffic demand is high. This strategy has potential to be applied in an urban road network due to its simplicity and easily obtained input data. The strategy is also applicable for single destination if some alternatives and similar routes are available.  相似文献   

16.
Big data from floating cars supply a frequent, ubiquitous sampling of traffic conditions on the road network and provide great opportunities for enhanced short-term traffic predictions based on real-time information on the whole network. Two network-based machine learning models, a Bayesian network and a neural network, are formulated with a double star framework that reflects time and space correlation among traffic variables and because of its modular structure is suitable for an automatic implementation on large road networks. Among different mono-dimensional time-series models, a seasonal autoregressive moving average model (SARMA) is selected for comparison. The time-series model is also used in a hybrid modeling framework to provide the Bayesian network with an a priori estimation of the predicted speed, which is then corrected exploiting the information collected on other links. A large floating car data set on a sub-area of the road network of Rome is used for validation. To account for the variable accuracy of the speed estimated from floating car data, a new error indicator is introduced that relates accuracy of prediction to accuracy of measure. Validation results highlighted that the spatial architecture of the Bayesian network is advantageous in standard conditions, where a priori knowledge is more significant, while mono-dimensional time series revealed to be more valuable in the few cases of non-recurrent congestion conditions observed in the data set. The results obtained suggested introducing a supervisor framework that selects the most suitable prediction depending on the detected traffic regimes.  相似文献   

17.
This paper develops a fuzzy-neural model (FNM) to predict the traffic flows in an urban street network, which has long been considered a major element in the responsive urban traffic control systems. The FNM consists of two modules: a gate network (GN) and an expert network (EN). The GN classifies the input data into a number of clusters using a fuzzy approach, and the EN specifies the input–output relationship as in a conventional neural network approach. While the GN groups traffic patterns of similar characteristics into clusters, the EN models the specific relationship within each cluster. An online rolling training procedure is proposed to train the FNM, which enhances its predictive power through adaptive adjustments of the model coefficients in response to the real-time traffic conditions. Both simulation and real observation data are used to demonstrative the effectiveness of the method.  相似文献   

18.
In spite of their widespread use in policy design and evaluation, relatively little evidence has been reported on how well traffic equilibrium models predict real network impacts. Here we present what we believe to be the first paper that together analyses the explicit impacts on observed route choice of an actual network intervention and compares this with the before-and-after predictions of a network equilibrium model. The analysis is based on the findings of an empirical study of the travel time and route choice impacts of a road capacity reduction. Time-stamped, partial licence plates were recorded across a series of locations, over a period of days both with and without the capacity reduction, and the data were ‘matched’ between locations using special-purpose statistical methods. Hypothesis tests were used to identify statistically significant changes in travel times and route choice, between the periods of days with and without the capacity reduction. A traffic network equilibrium model was then independently applied to the same scenarios, and its predictions compared with the empirical findings. From a comparison of route choice patterns, a particularly influential spatial effect was revealed of the parameter specifying the relative values of distance and travel time assumed in the generalised cost equations. When this parameter was ‘fitted’ to the data without the capacity reduction, the network model broadly predicted the route choice impacts of the capacity reduction, but with other values it was seen to perform poorly. The paper concludes by discussing the wider practical and research implications of the study’s findings.  相似文献   

19.
This paper deals with route choice models capturing travelers’ strategic behavior when adapting to revealed traffic conditions en route in a stochastic network. The strategic adaptive behavior is conceptualized as a routing policy, defined as a decision rule that maps from all possible revealed traffic conditions to the choices of next link out of decision nodes, given information access assumptions. In this paper, we use a specialized example where a variable message sign provides information about congestion status on outgoing links. We view the problem as choice under risk and present a routing policy choice model based on the cumulative prospect theory (CPT), where utility functions are nonlinear in probabilities and thus flexible attitudes toward risk can be captured.In order to illustrate the differences between routing policy and non-adaptive path choice models as well as differences between models based on expected utility (EU) theory and CPT, we estimate models based on synthetic data and compare them in terms of prediction results. There are large differences in path share predictions and the results demonstrate the flexibility of the CPT model to represent varying degrees of risk aversion and risk seeking depending on the outcome probabilities.  相似文献   

20.
Today, driver support tools intended to increase traffic safety, provide the driver with convenient information and guidance, or save time are becoming more common. However, few systems have the primary aim of reducing the environmental effects of driving. The aim of this project was to estimate the potential for reducing fuel consumption and thus the emission of CO2 through a navigation system where optimization of route choice is based on the lowest total fuel consumption (instead of the traditional shortest time or distance), further the supplementary effect if such navigation support could take into account real-time information about traffic disturbance events from probe vehicles running in the street network. The analysis was based on a large database of real traffic driving patterns connected to the street network in the city of Lund, Sweden. Based on 15 437 cases, the fuel consumption factor for 22 street classes, at peak and off-peak hours, was estimated for three types of cars using two mechanistic emission models. Each segment in the street network was, on a digitized map, attributed an average fuel consumption for peak and off-peak hours based on its street class and traffic flow conditions. To evaluate the potential of a fuel-saving navigation system the routes of 109 real journeys longer than 5 min were extracted from the database. Using Esri’s external program ArcGIS, Arcview and the external module Network Analysis, the most fuel-economic route was extracted and compared with the original route, as well as routes extracted from criterions concerning shortest time and shortest distance. The potential for further benefit when the system employed real-time data concerning the traffic situation through 120 virtual probe vehicles running in the street network was also examined. It was found that for 46% of trips in Lund the drivers spontaneous choice of route was not the most fuel-efficient. These trips could save, on average, 8.2% fuel by using a fuel-optimized navigation system. This corresponds to a 4% fuel reduction for all journeys in Lund. Concerning the potential for real-time information from probe vehicles, it was found that the frequency of disturbed segments in Lund was very low, and thus so was the potential fuel-saving. However, a methodology is presented that structures the steps required in analyzing such a system. It is concluded that real-time traffic information has the potential for fuel-saving in more congested areas if a sufficiently large proportion of the disturbance events can be identified and reported in real-time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号