首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
This paper proposes a novel dynamic speed limit control model accounting for uncertain traffic demand and supply in a stochastic traffic network. First, a link based dynamic network loading model is developed to simulate the traffic flow propagation allowing the change of speed limits. Shockwave propagation is well defined and captured by checking the difference between the queue forming end and the dissipation end. Second, the dynamic speed limit problem is formulated as a Markov Decision Process (MDP) problem and solved by a real time control mechanism. The speed limit controller is modeled as an intelligent agent interacting with the stochastic network environment stochastic network environment to assign time dependent link based speed limits. Based on different metrics, e.g. total network throughput, delay time, vehicular emissions are optimized in the modeling framework, the optimal speed limit scheme is obtained by applying the R-Markov Average Reward Technique (R-MART) based reinforcement learning algorithm. A case study of the Sioux Falls network is constructed to test the performance of the model. Results show that the total travel time and emissions (in terms of CO) are reduced by around 18% and 20% compared with the base case of non-speed limit control.  相似文献   

2.
The dynamic shortest path problem with time-dependent stochastic disruptions consists of finding a route with a minimum expected travel time from an origin to a destination using both historical and real-time information. The problem is formulated as a discrete time finite horizon Markov decision process and it is solved by a hybrid Approximate Dynamic Programming (ADP) algorithm with a clustering approach using a deterministic lookahead policy and value function approximation. The algorithm is tested on a number of network configurations which represent different network sizes and disruption levels. Computational results reveal that the proposed hybrid ADP algorithm provides high quality solutions with a reduced computational effort.  相似文献   

3.
Currently there is a true dichotomy in the pavement maintenance and rehabilitation (M&R) literature. On the one hand, there are integer programming-based models that assume that parameters are deterministically known. On the other extreme, there are stochastic models, with the most popular class being based on the theory of Markov decision processes that are able to account for various sources of uncertainties observed in the real-world. In this paper, we present an integer programming-based alternative to account for these uncertainties. A critical feature of the proposed models is that they provide – a priori – probabilistic guarantees that the prescribed M&R decisions would result in pavement condition scores that are above their critical service levels, using minimal assumptions regarding the sources of uncertainty. By construction of the models, we can easily determine the additional budget requirements when additional sources of uncertainty are considered, starting from a fully deterministic model. We have coined this additional budget requirement the price of uncertainty to distinguish from previous related work where additional budget requirements were studied due to parameter uncertainties in stochastic models. A numerical case study presents valuable insights into the price of uncertainty and shows that it can be large.  相似文献   

4.
This study investigates the impact of high-speed rail investment on the economy and environment in China using a computable general equilibrium (CGE) model. The analysis is implemented in a dynamic recursive framework capturing long-run capital accumulation and labor market equilibrium. A national level impact was simulated through direct impact drivers including land use conversion, output expansion, cost reduction, productivity increase, transport demand substitution and induced demand. The results suggest that rail investment in China over the past decade has been a positive stimulus to the economy, while the effect on CO2 emissions generation has been large. Overall, the economic impacts of rail investment are achieved primarily through induced demand and output expansion, whereas the contribution from a reduction of rail transportation costs and rail productivity increases were modest. In addition, negligible negative impacts were found from land use for rail development and the substitution effect among other modes. Emissions reduction from substitution of rail for other modes was small and offset by output expansion due to lowered rail transport costs and induced demand.  相似文献   

5.
Establishment of effective cooperation between vehicles and transportation infrastructure improves travel reliability in urban transportation networks. Lack of collaboration, however, exacerbates congestion due mainly to frequent stops at signalized intersections. It is beneficial to develop a control logic that collects basic safety message from approaching connected and autonomous vehicles and guarantees efficient intersection operations with safe and incident free vehicle maneuvers. In this paper, a signal-head-free intersection control logic is formulated into a dynamic programming model that aims to maximize the intersection throughput. A stochastic look-ahead technique is proposed based on Monte Carlo tree search algorithm to determine the near-optimal actions (i.e., acceleration rates) over time to prevent movement conflicts. Our numerical results confirm that the proposed technique can solve the problem efficiently and addresses the consequences of existing traffic signals. The proposed approach, while completely avoids incidents at intersections, significantly reduces travel time (ranging between 59.4% and 83.7% when compared to fixed-time and fully-actuated control strategies) at intersections under various demand patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号