首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
    
Priced managed lanes are increasingly being used to better utilize the existing capacity of the roadway to relieve congestion and offer reliable travel time to road users. In this paper, we investigate the optimization problem for pricing managed lanes with multiple entrances and exits which seeks to maximize the revenue and minimize the total system travel time (TSTT) over a finite horizon. We propose a lane choice model where travelers make online decisions at each diverge point considering all routes on a managed lane network. We formulate the problem as a deterministic Markov decision process and solve it using the value function approximation (VFA) method for different initializations. We compare the performance of the toll policies predicted by the VFA method against the myopic revenue policy which maximizes the revenue only at the current timestep and two heuristic policies based on the measured densities on the managed and general purpose lanes (GPLs). We test the results on four different test networks. The primary findings from our research suggest the usefulness of the VFA method for determining dynamic tolls. The best-found objective value from the method at its termination is better than other heuristics for all test networks with average improvements in the objective ranging between 10% and 90% for revenue maximization and 0–27% for TSTT minimization. Certain VFA initializations obtain best-found toll profiles within first 5–50 iterations which warrants computational time savings. Our findings also indicate that the revenue-maximizing optimal policies follow the “jam-and-harvest” behavior where the GPLs are pushed towards congestion in the earlier time steps to generate higher revenue in the later time steps, a characteristic not observed for the policies minimizing TSTT.  相似文献   

2.
    
The dynamic shortest path problem with time-dependent stochastic disruptions consists of finding a route with a minimum expected travel time from an origin to a destination using both historical and real-time information. The problem is formulated as a discrete time finite horizon Markov decision process and it is solved by a hybrid Approximate Dynamic Programming (ADP) algorithm with a clustering approach using a deterministic lookahead policy and value function approximation. The algorithm is tested on a number of network configurations which represent different network sizes and disruption levels. Computational results reveal that the proposed hybrid ADP algorithm provides high quality solutions with a reduced computational effort.  相似文献   

3.
    
We study the fleet portfolio management problem faced by a firm deciding which alternative fuel vehicles (AFVs) to choose for its fleet to minimise the weighted average of cost and risk, in a stochastic multi-period setting. We consider different types of technology and vehicles with heterogeneous capabilities. We propose a new time consistent recursive risk measure, the Recursive Expected Conditional Value at Risk (RECVaR), which we prove to be coherent. We then solve the problem for a large UK based company, reporting how the optimal policies are affected by risk aversion and by the clustering for each type of vehicle.  相似文献   

4.
    
This paper proposes a novel dynamic speed limit control model accounting for uncertain traffic demand and supply in a stochastic traffic network. First, a link based dynamic network loading model is developed to simulate the traffic flow propagation allowing the change of speed limits. Shockwave propagation is well defined and captured by checking the difference between the queue forming end and the dissipation end. Second, the dynamic speed limit problem is formulated as a Markov Decision Process (MDP) problem and solved by a real time control mechanism. The speed limit controller is modeled as an intelligent agent interacting with the stochastic network environment stochastic network environment to assign time dependent link based speed limits. Based on different metrics, e.g. total network throughput, delay time, vehicular emissions are optimized in the modeling framework, the optimal speed limit scheme is obtained by applying the R-Markov Average Reward Technique (R-MART) based reinforcement learning algorithm. A case study of the Sioux Falls network is constructed to test the performance of the model. Results show that the total travel time and emissions (in terms of CO) are reduced by around 18% and 20% compared with the base case of non-speed limit control.  相似文献   

5.
    
We propose a competitive on-demand mobility model using a multi-server queue system under infinite-horizon look-ahead. The proposed approach includes a novel dynamic optimization algorithm which employs a Markov decision process (MDP) and provides opportunities to revolutionize conventional transit services that are plagued by high cost, low ridership, and general inefficiency, particularly in disadvantaged communities and low-income areas. We use this model to study the implications it has for such services and investigate whether it has a distinct cost advantage and operational improvement. We develop a dynamic pricing scheme that utilizes a balking rule that incorporates socially efficient level and the revenue-maximizing price, and an equilibrium-joining threshold obtained by imposing a toll on the customers who join the system. Results of numerical simulations based on actual New York City taxicab data indicate that a competitive on-demand mobility system supported by the proposed model increases the social welfare by up to 37% on average compared to the single-server queuing system. The study offers a novel design scheme and supporting tools for more effective budget/resource allocation, planning, and operation management of flexible transit systems.  相似文献   

6.
    
This paper provides a globally optimal solution to an important problem: given a real-world route, what is the most energy-efficient way to drive a vehicle from the origin to the destination within a certain period of time. Along the route, there may be multiple stop signs, traffic lights, turns and curved segments, roads with different grades and speed limits, and even leading vehicles with pre-known speed profiles. Most of such route information and features are actually constraints to the optimal vehicle speed control problem, but these constraints are described in two different domains. The most important concept in solving this problem is to convert the distance-domain route constraints to some time-domain state and input constraints that can be handled by optimization methods such as dynamic programming (DP). Multiple techniques including cost-to-go function interpolation and parallel computing are used to reduce the computation of DP and make the problem solvable within a reasonable amount of time on a personal computer.  相似文献   

7.
Currently there is a true dichotomy in the pavement maintenance and rehabilitation (M&R) literature. On the one hand, there are integer programming-based models that assume that parameters are deterministically known. On the other extreme, there are stochastic models, with the most popular class being based on the theory of Markov decision processes that are able to account for various sources of uncertainties observed in the real-world. In this paper, we present an integer programming-based alternative to account for these uncertainties. A critical feature of the proposed models is that they provide – a priori – probabilistic guarantees that the prescribed M&R decisions would result in pavement condition scores that are above their critical service levels, using minimal assumptions regarding the sources of uncertainty. By construction of the models, we can easily determine the additional budget requirements when additional sources of uncertainty are considered, starting from a fully deterministic model. We have coined this additional budget requirement the price of uncertainty to distinguish from previous related work where additional budget requirements were studied due to parameter uncertainties in stochastic models. A numerical case study presents valuable insights into the price of uncertainty and shows that it can be large.  相似文献   

8.
    
Traffic pollution is an increasing challenge for cities. Emissions such as nitrogen dioxides pose a major health threat to the city’s inhabitants. These emissions often accumulate to critical levels in local areas of the city. To react to these critical emission levels, cities start implementing dynamic traffic management systems (TMS). These systems dynamically redirect traffic flows away from critical areas. These measures impact the travel speeds within the city. This is of particular importance for parcel delivery companies. These companies deliver goods to customers in the city. To avoid long delivery times and higher costs, companies already adapt their routing with respect to changing traffic conditions. Still, a communication with the TMS may allow anticipatory planning to avoid potentially critical areas in the city. In this paper, we show how communication between TMS and delivery companies results in benefits for both parties. To exploit the provided information, we develop a dynamic routing policy anticipating potential future measures of the TMS. We analyze our algorithm in a comprehensive case study for the TMS of the city of Braunschweig, Germany, a city often used as reference for a typical European city layout. We show that for the delivery company, integrating the TMS’ information in their routing algorithms reduces the driving times significantly. For the TMS, providing the information results in less traffic in the polluted areas.  相似文献   

9.
    
A fleet of vessels and helicopters is needed to support maintenance operations at offshore wind farms. The cost of this fleet constitutes a major part of the total maintenance costs, hence keeping an optimal or near-optimal fleet is essential to reduce the cost of energy. In this paper we study the vessel fleet size and mix problem that arises for the maintenance operations at offshore wind farms, and propose a stochastic three-stage programming model. The stochastic model considers uncertainty in vessel spot rates, weather conditions, electricity prices and failures to the system. The model is tested on realistic-sized problem instances, and the results show that it is valuable to consider uncertainty and that the proposed model can be used to solve instances of a realistic size.  相似文献   

10.
    
Railway big data technologies are transforming the existing track inspection and maintenance policy deployed for railroads in North America. This paper develops a data-driven condition-based policy for the inspection and maintenance of track geometry. Both preventive maintenance and spot corrective maintenance are taken into account in the investigation of a 33-month inspection dataset that contains a variety of geometry measurements for every foot of track. First, this study separates the data based on the time interval of the inspection run, calculates the aggregate track quality index (TQI) for each track section, and predicts the track spot geo-defect occurrence probability using random forests. Then, a Markov chain is built to model aggregated track deterioration, and the spot geo-defects are modeled by a Bernoulli process. Finally, a Markov decision process (MDP) is developed for track maintenance decision making, and it is optimized by using a value iteration algorithm. Compared with the existing maintenance policy using Markov chain Monte Carlo (MCMC) simulation, the maintenance policy developed in this paper results in an approximately 10% savings in the total maintenance costs for every 1 mile of track.  相似文献   

11.
基于监测量值变化速度特征的围岩稳定动态综合评判模型   总被引:1,自引:0,他引:1  
隧道施工中围岩力学行为受较多因素影响,考虑多因素对围岩稳定的综合评判被越来越多研究者所共识。监控量测是隧道围岩应力、变形状态最直接的反映,其变化速度特征是围岩稳定性评价的重要指标;从围岩稳定性的综合评判模型构建角度来说,所建立的模型必须考虑时间因素进行动态综合评判。据此,文章利用具有速度特征的动态综合评价模型可将评价对象速度状态和趋势融合的特点,提出了基于监测量值变化速度特征的隧道围岩稳定动态综合评判模型的构建方法和评判准则。该模型从多因素角度出发,可以全面地对多时段内被评价对象的变化速度进行测度;所采用的被评价对象变化速度状态和速度趋势计算方法使模型在短时量测或量测数据拟合程度不高时同样适用。该模型的可行性在华蓥山隧道围岩稳定判别中得到了验证,为隧道围岩稳定的综合判定提供了一种新的途径。  相似文献   

12.
    
Standards for fuel consumption and carbon dioxide emissions are implemented worldwide in most light-duty vehicle markets. Regulatory drive cycles, defined as specific time-speed patterns, are used to measure levels of fuel consumption and emissions. These measurements should realistically reflect real world driving performance, however there is increasing concern about their adequacy due to the discrepancies observed between certified and real world consumption and emissions values. One of the main reasons for the discrepancy is that current testing protocols do not account for non-mechanical vehicle energy needs, such as passengers’ thermal comfort needs and the use of electric auxiliaries on-board. Cabin heating and cooling can especially lead to considerable increase in vehicle energy consumption. This paper presents a simulation-based assessment framework to account for the additional fuel consumption related to the cabin thermal energy and auxiliary needs under the worldwide-harmonized light vehicles test procedure (WLTP). A vehicle cabin model is developed and the thermal comfort energy needs are derived for cooling and heating, depending on ambient external temperature under cold, moderate and warm climates. A modification to the WLTP is proposed by including the generated power profiles for thermal comfort and auxiliary needs. Dynamic programming is used to compute the fuel consumption on the modified WLTP for a rechargeable series hybrid electric vehicle (SHEV) architecture. Results show consumption increases of 20% to 96% compared to the currently adopted WLTP, depending on the considered climate.  相似文献   

13.
    
Establishment of effective cooperation between vehicles and transportation infrastructure improves travel reliability in urban transportation networks. Lack of collaboration, however, exacerbates congestion due mainly to frequent stops at signalized intersections. It is beneficial to develop a control logic that collects basic safety message from approaching connected and autonomous vehicles and guarantees efficient intersection operations with safe and incident free vehicle maneuvers. In this paper, a signal-head-free intersection control logic is formulated into a dynamic programming model that aims to maximize the intersection throughput. A stochastic look-ahead technique is proposed based on Monte Carlo tree search algorithm to determine the near-optimal actions (i.e., acceleration rates) over time to prevent movement conflicts. Our numerical results confirm that the proposed technique can solve the problem efficiently and addresses the consequences of existing traffic signals. The proposed approach, while completely avoids incidents at intersections, significantly reduces travel time (ranging between 59.4% and 83.7% when compared to fixed-time and fully-actuated control strategies) at intersections under various demand patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号