首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This paper develops three game-theoretical models to analyze shipping competition between two carriers in a new emerging liner container shipping market. The behavior of each carrier is characterized by an optimization model with the objective to maximize his payoff by setting optimal freight rate and shipping deployment (a combination of service frequency and ship capacity setting). The market share for each carrier is determined by the Logit-based discrete choice model. Three competitive game strategic interactions are further investigated, namely, Nash game, Stackelberg game and deterrence by taking account of the economies of scale of the ship capacity settings. Three corresponding competition models with discrete pure strategy are formulated as the variables in shipment deployment are indivisible and the pricing adjustment is step-wise in practice. A ɛ -approximate equilibrium and related numerical solution algorithm are proposed to analyze the effect of Nash equilibrium. Finally, the developed models are numerically evaluated by a case study. The case study shows that, with increasing container demand in the market, expanding ship capacity setting is preferable due to its low marginal cost. Furthermore, Stackelberg equilibrium is a prevailing strategy in most market situations since it makes players attain more benefits from the accommodating market. Moreover, the deterrence effects largely depend on the deterrence objective. An aggressive deterrence strategy may make potential monopolist suffer large benefit loss and an easing strategy has little deterrence effect.  相似文献   

2.
We propose the problem of profit-based container assignment (P-CA), in which the container shipment demand is dependent on the freight rate, similar to the “elastic demand” in the literature on urban transportation networks. The problem involves determining the optimal freight rates, the number of containers to transport and how to transport the containers in a liner shipping network to maximize the total profit. We first consider a tactical-level P-CA with known demand functions that are estimated based on historical data and formulate it as a nonlinear optimization model. The tactical-level P-CA can be used for evaluating and improving the container liner shipping network. We then address the operational-level P-CA with unknown demand functions, which aims to design a mechanism that adjusts the freight rates to maximize the profit. A theoretically convergent trial-and-error approach, and a practical trial-and-error approach, are developed. A numerical example is reported to illustrate the application of the models and approaches.  相似文献   

3.
This paper proposes a state-augmented shipping (SAS) network framework to integrate various activities in liner container shipping chain, including container loading/unloading, transshipment, dwelling at visited ports, in-transit waiting and in-sea transport process. Based on the SAS network framework, we develop a chance-constrained optimization model for a joint cargo assignment problem. The model attempts to maximize the carrier’s profit by simultaneously determining optimal ship fleet capacity setting, ship route schedules and cargo allocation scheme. With a few disparities from previous studies, we take into account two differentiated container demands: deterministic contracted basis demand received from large manufacturers and uncertain spot demand collected from the spot market. The economies of scale of ship size are incorporated to examine the scaling effect of ship capacity setting in the cargo assignment problem. Meanwhile, the schedule coordination strategy is introduced to measure the in-transit waiting time and resultant storage cost. Through two numerical studies, it is demonstrated that the proposed chance-constrained joint optimization model can characterize the impact of carrier’s risk preference on decisions of the container cargo assignment. Moreover, considering the scaling effect of large ships can alleviate the concern of cargo overload rejection and consequently help carriers make more promising ship deployment schemes.  相似文献   

4.
Container liner shipping companies only partially alter their shipping networks to cope with the changing demand, rather than entirely redesign and change the network. In view of the practice, this paper proposes an optimal container liner shipping network alteration problem based on an interesting idea of segment, which is a sequence of legs from a head port to a tail port that are visited by the same type of ship more than once in the existing shipping network. In segment-based network alteration, the segments are intact and each port is visited by the same type of ship and from the same previous ports. As a result, the designed network needs minimum modification before implementation. A mixed-integer linear programming model with a polynomial number of variables is developed for the proposed segmented-based liner shipping network alternation problem. The developed model is applied to an Asia–Europe–Oceania liner shipping network with a total of 46 ports and 11 ship routes. Results demonstrate that the problem could be solved efficiently and the optimized network reduces the total cost of the initial network considerably.  相似文献   

5.
Container liner fleet deployment (CLFD) is the assignment of containerships to port rotations (ship routes) for efficient transport of containers. As liner shipping services have fixed schedules, the ship-related operating cost is determined at the CLFD stage. This paper provides a critical review of existing mathematical models developed for the CLFD problems. It first gives a systematic overview of the fundamental assumptions used by the existing CLFD models. The operating characteristics dealt with in existing studies are then examined, including container transshipment and routing, uncertain demand, empty container repositioning, ship sailing speed optimization and ship repositioning. Finally, this paper points out four important future research opportunities: fleet deployment considering ship surveys and inspections, service dependent demand, pollutant emissions, and CLFD for shipping alliances.  相似文献   

6.
Tactical planning models for liner shipping problems such as network design and fleet deployment usually minimize the total cost or maximize the total profit subject to constraints including ship availability, service frequency, ship capacity, and transshipment. Most models in the literature do not consider slot-purchasing, multi-type containers, empty container repositioning, or ship repositioning, and they formulate the numbers of containers to transport as continuous variables. This paper develops a mixed-integer linear programming model that captures all these elements. It further examines from the theoretical point of view the additional computational burden introduced by incorporating these elements in the planning model. Extensive numerical experiments are conducted to evaluate the effects of the elements on tactical planning decisions. Results demonstrate that slot-purchasing and empty container repositioning have the largest impact on tactical planning decisions and relaxing the numbers of containers as continuous variables has little impact on the decisions.  相似文献   

7.
The routing, scheduling and fleet deployment is an important integrated planning problem faced by liner shipping companies which also lift load from the spot market. This paper is concerned with coordinating the decisions of the assignment of ships to contractual and spot voyages, and the determination of ship routes and schedules in order to maximize profit. We propose a new model for representing voyages as nodes of a directed graph which is used to build a mixed integer programming formulation. Besides contractual and spot nodes, another type of node is put forward to represent a combination of a contractual voyage with one or more spot voyages. In addition, the concept of dominated nodes is introduced in order to discard them and reduce the effort of the search for an optimal solution. A set of test problems has been generated taking into account real world assumptions. The test problems are solved by an optimization software and computational results are reported. The results show the potential of the approach to solve test problems of moderate size.  相似文献   

8.
This paper proposes a liner container seasonal shipping revenue management problem for a container shipping company. For a given weekly multi-type shipment demand pattern in a particular season, the proposed problem aims to maximize the total seasonal shipping profit by determining the number of multi-type containers to be transported and assigned on each container route, the number of containerships deployed on each ship route, and the sailing speed of containerships on each shipping leg subject to both the volume and capacity constraints of each containership. By adopting the realistic bunker consumption rate of a containership as a function of its sailing speed and payload (displacement), we develop a mixed-integer nonlinear programing with a nonconvex objective function for the proposed liner container seasonal shipping revenue management problem. A tailored branch and bound (B&B) method is designed to obtain the global ε-optimal solution of the model. Numerical experiments are finally conducted to assess the efficiency of the solution algorithm and to show the applicability of the developed model.  相似文献   

9.
10.
Abstract

Since 1990s the liner shipping industry has faced a period of restructuring and consolidation, and been confronted with a continuing increase in container vessel scale. The impact of these changes is noticeable in trade patterns, cargo handling methods and shipping routes, in short ‘operations’. After listing factors influencing size, growth in container ship size is explained by economies of scale in deploying larger vessels. In order to quantify economies of scale, this paper uses the liner service cash flow model. A novelty in the model is the inclusion of +6000-20-foot Equivalent Unit (TEU) vessels and the distinction in costs between single and twin propeller units on ships. The results illustrate that scale economies have been – and will continue to be – the driving force behind the deployment of larger container vessels. The paper then assesses the link between ship size and operations, given current discussions about the increase in container vessel scale. It is found that (a) ship size and operations are linked; (b) optimal ship size depends on transport segment (deep-sea vs. short-sea shipping, SSS), terminal type (transhipment terminals vs. other terminals), trade lane (East-West vs. North-South trades) and technology; and (c) a ship optimal for one trade can be suboptimal for another.  相似文献   

11.
This paper presents a study which utilized a conceptual framework with institutional theory as its base to empirically evaluate the impact of institutional pressures, internal green practices, and external green collaborations on green performance. Factor analysis was employed to identify the key institutional pressures (i.e. coercive, normative and mimetic pressures), internal green practices (i.e. green shipping practices and green operations), external green collaborations (i.e. green collaboration with supplier, green collaboration with partner, and green collaboration with customer), and green performance (i.e. reduction of pollutants, and perceived green brand) dimensions. We collected data from surveyees employed by 129 container shipping companies and agencies in Taiwan, and applied a structural equation model (SEM) to test the research hypotheses. The findings revealed that institutional pressures have positive effects on internal green practices; internal green practices positively influence external green collaborations; internal green practices and external green collaborations positively influence green performance but institutional pressure is not positively associated with external green collaborations. Theoretical contributions and managerial implications are presented to help container shipping operators improve green performance.  相似文献   

12.
This paper develops an operational activity-based method to estimate CO2 emissions from container shipping in contrasts to the traditional aggregated activity-based method. Two case studies investigate the impacts of empty container repositioning policies and port handling capacity on CO2 emission index. The results show that the aggregated method could well overestimate CO2 emissions and the operational activity-based method is more appropriate. The paper also demonstrates that high port-handling capacity and efficient empty container repositioning could reduce CO2 emissions in seaborne container transportation.  相似文献   

13.
Arctic sea routes have for long attracted interest from observers and shipping companies because of their shorter distances between the Atlantic and the Pacific. The prevalence of sea ice prevented the real development of a significant traffic, but did not prevent research from trying to assess the economic viability of these routes. With the actual present melting of sea ice in the Arctic, this effort at modeling the profitability of Arctic shipping routes received a new impetus. However, the conclusions of these studies vary widely, depending on the chosen parameters and their value. What can be said of these models, from 1991 until 2013, and to what extent can a model be drawn, capitalizing on twenty years of simulations?  相似文献   

14.
Reversing port rotation directions of ship routes is a practical alteration of container liner shipping networks. The port rotation directions of ship routes not only affect the transit time of containers, as has been recognized by the literature, but also the shipping capacity and transshipment cost. This paper aims to obtain the optimal port rotation directions that minimize the generalized network-wide cost including transshipment cost, slot-purchasing cost and inventory cost. A mixed-integer linear programming model is proposed for the optimal port rotation direction optimization problem and it nests a minimum cost multi-commodity network flow model. The proposed model is applied to a liner shipping network operated by a global liner shipping company. Results demonstrate that real-case instances could be efficiently solved and significant cost reductions are gained by optimization of port rotation directions.  相似文献   

15.
In this paper, the maritime fleet renewal problem (MFRP) is extended to include regional limitations in the form of emission control areas. The motivation for including this aspect is that strengthening of emission regulations in such areas is expected to be challenging for deep sea shipping in the years to come. In the proposed model, various means to cope with these stricter emission regulations are evaluated for new vessels, and the possibility of upgrading existing vessels with new emission reduction technology is introduced. We consider future fuel prices to be important for the problem, and have chosen to treat them as uncertain, and thus, a stochastic programming model is chosen. A fleet renewal problem faced by the liner shipping operator Wallenius Wilhelmsen Logistics, concerning whether to use low sulphur fuel or have an exhaust gas scrubber system installed to comply with sulphur regulation in emission control areas from 2015, is used as a case study. Furthermore, tests show that the savings from including the aspect of emission control areas in the MFRP are substantial.  相似文献   

16.
Hadi Ghaderi 《运输评论》2019,39(1):152-173
ABSTRACT

The maritime industry has been continuously transforming the nature of its business and striving to embrace technology in many aspects. In this context, autonomous technologies have been receiving momentum with a potential to revolutionise the landscape of shipping industry. After conducting a comprehensive literature review on the issues facing by the short sea shipping (SSS) industry, a model is developed to explore the potential savings of removing crew and use of autonomous technologies through a Continuously Unmanned Ship (CUS) that is operated by a Shore Control Centre (SCC). The analysis shows that autonomous technologies are viable to the challenges that the shipping industry is facing in terms of crew costs and skill shortage. To validate this statement, a case study is selected and various scenarios were tested based on relevant operational and financial considerations, including crew arrangement, cargo utilisation levels and shore wage coefficients. The results suggest that the savings occur in demand-uncertain markets and where a network of vessels are operated via a control centre. While autonomous technology use in shipping holds promise, there remain several limitations that this research addresses in terms of implementation, commercial attractiveness, risk profile, legislative, workforce planning and port operations.  相似文献   

17.
This paper proposes a centralized network data envelopment analysis model that combines the centralized data envelopment analysis model and network data envelopment analysis to allocate resources among sub-units. In the proposed model, this paper also considers the situations in which undesirable outputs are jointly produced with desirable outputs, the reduction of undesirable outputs is associated with the reduction of energy inputs, and some inputs are dedicated to the specific sub-unit while some inputs are shared among sub-units. To comprehensively investigate this issue, two cases are discussed. One case explores the situation in which common inputs are shared among the first process of sub-units, while the other case explores the situation in which common inputs are also shared among two processes of sub-units. The proposed model is illustrated in an empirical example of 14 Asian shipping routes operated by a Taiwanese container shipping company. In order to avoid organizational resistance, minor and major adjustment policies are demonstrated. The minor adjustment policy transfers inputs among routes but maintains the original levels of input resources, whereas the major adjustment policy reduces the total amount of input resources. The results provide valuable information for the centralized decision-maker on how to reallocate resources among the sub-units.  相似文献   

18.
Greenhouse gas emissions from international shipping are an increasing concern. The paper evaluates whether vessel speed reduction can be a potentially cost-effective CO2 mitigation option for ships calling on US ports. By applying a profit-maximizing equation to estimate route-specific, economically-efficient speeds, we explore policy impacts of a fuel tax and a speed reduction mandate on CO2 emissions. The profit-maximizing function incorporates opportunity costs associated with speed reduction that go unobserved in more traditional marginal abatement cost analyses. We find that a fuel tax of about $150/ton fuel will lead to average speed-related CO2 reductions of about 20–30%. Moreover, a speed reduction mandate targeted to achieve 20% CO2 reduction in the container fleet costs between $30 and $200 per ton CO2 abated, depending on how the fleet responds to a speed reduction mandate.  相似文献   

19.
This paper proposes a practical tactical-level liner container assignment model for liner shipping companies, in which the container shipment demand is a non-increasing function of the transit time. Given the transit-time-sensitive demand, the model aims to determine which proportion of the demand to fulfill and how to transport these containers in a liner shipping network to maximize the total profit. Although the proposed model is similar to multi-commodity network-flow (MCNF) with side constraints, unlike the MCNF with time delay constraints or reliability constraints that is NP-hard, we show that the liner container assignment model is polynomially solvable due to its weekly schedule characteristics by developing two link-based linear programing formulations. A number of practical extensions and applications are analyzed and managerial insights are discussed. The polynomially solvable liner container assignment model is then applied to address several important decision problems proposed by a global liner shipping company.  相似文献   

20.
This paper studies real-time schedule recovery policies for liner shipping under various regular uncertainties and the emerging disruption event that may delay a vessel from its planned schedule. The aim is to recover the affected schedule in the most efficient way. One important contribution of this work is to explicitly distinguish two types of uncertainties in liner shipping, and propose different strategies to handle them. The problem can be formulated as a multi-stage stochastic control problem that minimizes the total expected fuel cost and delay penalty. For regular uncertainties that can be characterized by appropriate probabilistic models, we develop the properties of the optimal control policy; then we show how an emerging disruption may change the control policies. Numerical studies demonstrate the advantages of real-time schedule recovery policies against some typical alternatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号