首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
The behavior of a ship encountering large regular waves from astern at low frequency is the object of investigation, with a parallel study of surf-riding and periodic motion paterns. First, the theoretical analysis of surf-riding is extended from purely following to quartering seas. Steady-state continuation is used to identify all possible surf-riding states for one wavelength. Examination of stability indicates the existence of stable and unstable states and predicts a new type of oscillatory surf-riding. Global analysis is also applied to determine the areas of state space which lead to surf-riding for a given ship and wave conditions. In the case of overtaking waves, the large rudder-yaw-surge oscillations of the vessel are examined, showing the mechanism and conditions responsible for loss of controllability at certain vessel headings.List of symbols c wave celerity (m/s) - C(p) roll damping moment (Ntm) - g acceleration of gravity (m/s2) - GM metacentric height (m) - H wave height (m) - I x ,I z roll and yaw ship moments of inertia (kg m2) - k wave number (m–1) - K H ,K W ,K R hull reaction, wave, rudder, and propeller - K p forces in the roll direction (Ntm) - m ship mass (kg) - n propeller rate of rotation (rpm) - N H ,N W ,N R hull reaction, wave, rudder, and propeller - N P moments in the yaw direction (Ntm) - p roll angular velocity (rad/s) - r rate-of-turn (rad/s) - R(,x) restoring moment (Ntm) - Res(u) ship resistance (Nt) - t time (s) - u surge velocity (m/s) - U vessel speed (m/s) - v sway velocity (m/s) - W ship weight (Nt) - x longitudinal position of the ship measured from the wave system (m) - x G ,z G longitudinal and vertical center of gravity (m) - x S longitudinal position of a ship section (S), in the ship-fixed system (m) - X H ,X W ,X R hull reaction, wave, rudder, and propeller - X P forces in the surge direction (Nt) - y transverse position of the ship, measured from the wave system (m) - Y H ,Y W ,Y R hull reaction, wave, rudder, and propeller - Y p forces in the sway direction (Nt) - z Y vertical position of the point of action of the lateral reaction force during turn (m) - z W vertical position of the point of action of the lateral wave force (m) Greek symbols angle of drift (rad) - rudder angle (rad) - wavelength (m) - position of the ship in the earth-fixed system (m) - water density (kg/m3) - angle of heel (rad) - heading angle (rad) - e frequency of encounter (rad/s) Hydrodynamic coefficients K roll added mass - N v ,N r yaw acceleration coefficients - N v N r N rr N rrv ,N vvr yaw velocity coefficients K. Spyrou: Ship behavior in quartering waves - X u surge acceleration coefficient - X u X vr surge velocity coefficients - Y v ,Y r sway acceleration coefficients - Y v ,Y r ,Y vv ,Y rr ,Y vr sway velocity coefficients European Union-nominated Fellow of the Science and Technology Agency of Japan, Visiting Researcher, National Research Institute of Fisheries Engineering of Japan  相似文献   

2.
武启慧  朱仁庆  谢彤 《船舶工程》2020,42(S1):332-336
为分析波浪对船舶快速性和耐波性的影响,必须对波浪中航行的船舶阻力增值进行准确预报。本文基于计算流体力学软件FINE/Marine建立了Wigley船模的数值模型,对不同规则波波长下的船体运动和波浪增阻进行了计算,并与试验结果进行对比,验证了数值模型的可行性与准确性。同时计算分析了船舶在规则波中航行时的波浪增阻与浪向之间的变化关系。通过研究发现:随着浪向角的增大船舶波浪增阻逐渐增加,在60°浪向角时波浪增阻达到最大值,浪向角对波浪增阻的影响较大。本文的研究方法可用于船舶有航速下的不同浪向波浪增阻的数值预报。  相似文献   

3.
研究风浪、浪流和风浪流联合作用对275HP拖网渔船单船艏艉双锚锚泊时锚泊力和运动量的影响。试验结果表明,风浪作用下的锚泊力和横摇角度均大于纯浪作用的情况;流速小于1.0 m/s时浪流作用下的锚泊力大于纯浪作用的情况,而横摇角度则略小于纯浪作用的结果;风浪流联合作用下的艏艉拉力均大于风浪或浪流作用下的拉力值。由于渔船艏艉受风和受流面积的区别,导致艏拉力时流的影响较大,而艉拉力时则风的影响较大。由于流作用时渔船具有的初始横摇角度对其运动具有抑制,从而风浪流联合作用时的横摇角度要略低于风浪作用下的角度值。在本次试验范围内,当港内同时有10级左右风和小于1.0 m/s流速的流共同作用时,建议允许有效波高取0.6 m比较合适。  相似文献   

4.
淮安水利枢纽二期工程需要增建渡槽,与一期渡槽形成长距离通航渡槽后可能对通航条件造成影响.针对这一问题,建立了三维数学模型,选择最不利船型组合情况下的两种工况,模拟分析二期渡槽建设前后的渡槽通航条件,即上下行船舶对开工况、是否布置消能格栅工况.得出结论:1)在不布置消能格栅的情况下二期渡槽建成后波高增加约20%,在增加消...  相似文献   

5.
In this paper, a new wave spectra estimation method is proposed in which the frequency domain wave estimation method (FDWE) is extended into a probabilistic analytical framework in order to estimate the encountered sea states involving uncertainty in transfer functions of a ship. The proposed method, named the Stochastic Wave Spectra Estimation (SWSE), makes use of an Hermite polynomial chaos expansion (PCE) to represent the uncertainty in the transfer functions and the response surfaces. The method involves a mathematical formulation where an extension of the deterministic FDWE concept to the space of random variables is made. The proposed method can accurately and easily estimate the encountered wave spectra based on ship response measurements accounting for uncertainty in the transfer functions. In this paper, numerical and experimental investigations of the proposed SWSE are made, where the uncertainties in the transfer functions of heave and pitch motions of a containership are taken into account. The validity of the SWSE is demonstrated by comparison to results of uncertainty analyses through the Monte-Carlo simulations (MCS).  相似文献   

6.
In this paper,various aspects of the 2D and 3D nonlinear liquid sloshing problems in vertically excited containers have been studied numerically along with the help of a modified-transformation.Based on this new numerical algorithm,a numerical study on a regularly and randomly excited container in vertical direction was conducted utilizing four different cases: The first case was performed utilizing a 2D container with regular excitations.The next case examined a regularly excited 3D container with two different initial conditions for the liquid free surface,and finally,3D container with random excitation in the vertical direction.A grid independence study was performed along with a series of validation tests.An iteration error estimation method was used to stop the iterative solver(used for solving the discretized governing equations in the computational domain) upon reaching steady state of results at each time step.In the present case,this method was found to produce quite accurate results and to be more time efficient as compared to other conventional stopping procedures for iterative solvers.The results were validated with benchmark results.The wave elevation time history,phase plane diagram and surface plots represent the wave nonlinearity during its motion.  相似文献   

7.
This article presents a nonlinear time-domain simulation method for the prediction of large-amplitude motions of a Ro–Ro ship in regular oblique waves in an intact and a damaged condition. Numerical computations and model tests have been carried out to investigate the dynamic motion responses of Ro–Ro ship Dextra to various wave amplitudes at three different wave headings. The results of numerical and experimental investigations for stern quartering waves are reviewed. Comparisons between predictions and measurements show good agreement except in the roll-resonant region. Nonlinear effects are significant in horizontal modes of motion, and resonant roll motion, and there is strong coupling between all modes of motion in the roll-resonant region for large-amplitude responses. On the other hand, the time-domain simulation technique suffers from numerical drift in horizontal modes of motion as wave amplitude increases. This is due to nonlinear equations of motion and the lack of a restoring force and moment in horizontal motion. Received: April 30, 2002 / Accepted: August 9, 2002 Acknowledgments. II Programme of the European Community Commission under contract No. BRPR-CT97-0513. Address correspondence to: H.S. Chan (hoi-sang.chan@ncl.ac.uk)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号