首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
为了探明围压对盾构隧道错缝拼装管片衬砌结构力学性能的影响,以苏通GIL电力管廊隧道为工程背景,采用"多功能盾构隧道结构体试验系统"对3种不同围压下的错缝拼装的管片衬砌结构进行了原型加载试验,从管片衬砌结构的内力、变形、纵缝张开、螺栓应变和主筋应变等方面研究了围压对管片衬砌结构的影响。研究结果表明:①围压变化对管片衬砌结构弯矩的大小和分布影响较小,而对轴力大小和分布影响较大,围压增大,管片衬砌结构的轴力分布更为均匀;②管片衬砌结构的形变呈现不规则的"椭圆形",围压增大可显著降低管片衬砌结构的整体形变,提高管片衬砌结构的稳定性;③围压增大有利于控制管片纵缝张开量,减小螺栓的应变;④围压的增大能够降低管片内侧主筋拉应变,但管片外侧主筋的压应力会随围压的增大而增大,使得正常使用阶段管片外侧主筋应力由压应力控制;⑤围压增大能够有效延长管片衬砌结构单点位移、纵缝张开、螺栓应变线性变化过程,延缓了管片衬砌结构进入塑性变形的时间;⑥高围压条件下管片结构处于高轴压受力状态,使得管片结构外侧受压钢筋应力增大,易造成钢筋屈服先于混凝土压溃发生,使管片结构抗压强度降低。在进行工程设计时,建议对高围压下管片结构的外侧受压钢筋进行加强设计。  相似文献   

2.
为提高铁路双线大断面隧道二次衬砌钢筋保护层控制质量,降低拱顶开裂风险,针对隧道二次衬砌钢筋在大跨度时本身具有向下的沉落变形特点,需对钢筋沉落量进行有效控制。二次衬砌环向主筋受力体系与拱的受力方式相同,以郑万高速铁路隧道二次衬砌结构几何参数、钢筋及垫块布置、钢筋的自重为研究对象,按无铰拱结构受力计算方式,采用经典力学原理、拱的挠度理论、挠度叠加设立方程,对钢筋自重下的预留沉落量进行研究,得到环向主筋越小施工沉落量越大,环向主筋越大施工沉落量越小的规律。通过理论公式计算出各种衬砌类型钢筋施工沉落量,提前进行有效预设,并按施工沉落变形对钢筋进行有效限位支撑,提高钢筋安装的准确性,有效控制了二次衬砌钢筋保护层,满足了设计要求。  相似文献   

3.
在役盾构隧道管片衬砌的承载能力劣化模型是隧道结构耐久性评价及科学养护的基础.以建立能考虑工程不确定性的钢筋混凝土管片概率承载能力劣化模型为目标,考虑隧道运营环境的主要侵蚀因子及管片衬砌的压弯受力特性,建立碳化侵蚀与氯离子侵蚀下管片主筋的锈蚀模型;考虑锈蚀管片中钢筋的截面面积损失以及钢筋[混凝土黏结滑移,以钢筋锈蚀率为媒...  相似文献   

4.
极高地应力软岩隧道双层支护技术   总被引:2,自引:0,他引:2  
司剑钧 《隧道建设》2014,34(7):685-690
兰渝铁路两水隧道洞身主要通过炭质千枚岩软岩地层,隧道为极高地应力状态,最大水平主应力值为6.5~11.3 MPa。施工前期,隧道初期支护结构变形较大,部分钢拱架扭曲、断裂,支护结构失稳,初期支护结构侵入衬砌净空,拆换拱情况频繁发生,局部地段二次衬砌开裂。针对前期施工中出现的问题,分别开展双层初期支护和双层衬砌试验,对试验段初期支护变形、围岩压力、接触压力、钢架应力、钢筋应力、混凝土应力等进行现场试验研究,掌握试验段设计及施工参数条件下,隧道支护和衬砌结构受力和变形规律。主要研究结果如下:1)双层初期支护变形相对较小,喷混凝土应力、钢架应力、二次衬砌混凝土应力及二次衬砌钢筋应力均未超过材料的容许应力,工作状态良好;2)双层初期支护可减少绑扎钢筋的工序,不需要再另增衬砌台车,在工序组织上更加便利,工效性相对较高。  相似文献   

5.
地震发生频繁区域之岩石隧道受震破坏案例已发生多起,其相关研究课题已日渐受重视,惟土层隧道耐震设计已有规范遵循,岩石隧道者者尚缺乏深入探讨。研究采经岩石隧道震后破坏案例及解析解等验证正确性之动态数值分析模式,探讨岩石隧道受震工程影响因子,包括衬砌刚度、衬砌与岩盘互制、围岩加劲及围岩弱化等。由分析结果知,衬砌劲度越大,震波引致最大应力增量正规化值愈大,即震波引致应力增量值愈大,因此隧道衬砌耐震设计不能全以提高劲度为主要方法;隧道衬砌与岩盘互制作用研究结果显示,采用匀滑开挖、防水膜及衬砌与岩盘填补增加滑动性材料等,可减少衬砌受震引致轴向应力增量,达到减震效果;岩石隧道混凝土衬砌外侧之再加厚衬砌与辅助工法等加劲措施,经采用等值劲度模拟分析结果显示,采用如一次支撑及辅助工法提高围岩劲度,将增加衬砌轴向应力,但减少剪应力及挠曲应力;加大加劲范围可减少衬砌轴向应力,但将增加剪应力及挠曲应力;开挖引致的松动区减少围岩劲度,将减少衬砌轴向应力,但增加剪应力及挠曲应力。  相似文献   

6.
为有效解决传统隧道衬砌工艺中衬砌拱顶脱空、浇筑混凝土厚度和强度不足等二次衬砌质量通病,提高衬砌整体性并提升二衬标准化施工水平,文章针对景文高速耙齿岩隧道项目工程,采用了新型可带模注浆的衬砌台车以替代传统的混凝土浇筑方式,并对台车模板和分流系统进行综合改造设计以更好的适配耙齿岩隧道衬砌工程的施工特点,在此基础上提出了完整的逐窗入模和浇筑混凝土施工流程。此外,针对带模注浆施工前的特殊情况提出了局部超前预注浆处理相关施工要点及工艺参数,最终对所采用的优化衬砌工艺进行了浇筑混凝土效果检验。衬砌工程质量检验评定结果表明:经逐窗入模及带模注浆施工后的混凝土强度、衬砌厚度及墙面平整度均满足施工技术标准,二衬质量得到明显改善。研究所采用的新型衬砌台车和逐窗入模系统解决了隧道二衬混凝土的固有施工技术缺陷,提高了施工工效,为隧道衬砌的标准化建设提供了可行的技术参考。  相似文献   

7.
为解决隧道衬砌背后空洞及不密实、施工缝压溃、掉块、止水带偏位等技术难题,创新研制了自动布料带压浇筑隧道智能衬砌台车,构建了隧道衬砌混凝土自动布料、带压浇筑、施工缝零搭接和防空洞监测等新工艺体系,可减少或消除衬砌质量缺陷。试验表明: 1)采用自动布料封闭管路带压浇筑系统,能实现分层逐仓浇筑,减少混凝土离析和污染,实现单次换管2~3 min,提高效率35%以上,节省人工50%以上; 2)拱部采用自动振捣器,混凝土不密实减少85%以上; 3)运用双模式控制系统,提升定位精度和安全性,比普通台车定位时间缩短30 min以上; 4)采用“V”形槽零搭接装置,可避免施工缝顶裂和压溃,且利用可视化堵头板,方便施工; 5)应用智能集成控制系统,可实现自动布料、自动振捣、自动监测和自动生成数据报表,实现人机交互。  相似文献   

8.
高地应力软岩隧道衬砌裂损重新施作段结构安全性分析   总被引:1,自引:0,他引:1  
马召林  焦雷  赵爽  黄明利 《隧道建设》2018,38(9):1489-1496
为研究高地应力软岩隧道衬砌裂损重新施作段结构的安全性,依托木寨岭隧道衬砌裂损段,通过现场监测和数值模拟的方法,分析高地应力软岩隧道衬砌裂损重新施作段结构变形受力特征,进而分析结构的安全性。现场监测结果表明: 衬砌裂损重新施作后,前3层支护几乎承担了所有的围岩压力和变形,通过层层支护、分层抵抗的方法来逐渐降低衬砌受力,保证衬砌结构的安全。通过数值计算对比分析衬砌重新施作前后的隧道受力变形状态,其中重新施作后衬砌各位置混凝土应力和钢筋应力增长趋势均不明显,计算得到衬砌裂损重新施作段结构安全系数均处于3.3~8.1,各位置安全系数均大于规范中的要求值,说明结构处于安全状态。  相似文献   

9.
漫谈矿山法隧道技术第五讲——衬砌(一)   总被引:1,自引:0,他引:1  
关宝树 《隧道建设》2016,36(3):251-256
从使用性、应对未来不确定因素和特殊围岩时补充支护的力学功能等方面分析二次衬砌的功能,说明二次衬砌是确保隧道使用性、耐久性、降低不确定因素影响及具有力学功能的不可或缺的构件。分析衬砌的耐久性: 目前各国对衬砌的计划使用期限的规定一般是100年;调查显示,混凝土衬砌经过修补或采用“预防维护”体制,可以满足100年的耐久性要求,但运营隧道的衬砌有随时间逐渐劣化的趋势。隧道结构劣化的原因除了施工质量未达到设计要求外,主要是围岩劣化和衬砌本身劣化。结合日本的试验分析认为: 在耐久性设计中,可以不考虑围岩劣化的问题。混凝土衬砌的耐久性,多数情况下取决于混凝土的施工工艺。调查发现目前衬砌存在的主要问题有: 1)衬砌混凝土不密实; 2)衬砌背后留有空洞; 3)衬砌厚度不均匀,拱顶厚度偏薄且留有空隙; 4)衬砌混凝土存在潜在的裂缝。总结各国在提高隧道二次衬砌耐久性方面的主要措施: 1)尽可能不采用钢筋混凝土衬砌; 2)采用钢筋混凝土时,保护层厚度应不小于50 mm; 3)采用喷混凝土作为二次衬砌时,除计算厚度外,应增加50 mm的保护层厚度; 4)二次衬砌应设置仰拱; 5)仰拱和拱墙须“闭合成环”; 6)改善混凝土施工工艺; 7)减少混凝土衬砌的初始缺陷。认为在现有技术的基础上做好6)、7)两点,衬砌的耐久性将得到极大的改善。针对6)、7)两点,介绍日本在衬砌施工关键工艺--浇筑、捣固和养生方面的做法: 拱顶部水平压入浇筑工法、隧道衬砌拱顶捣固系统、喷雾养生和采用塑料模板,以期为我国同仁提供借鉴。  相似文献   

10.
徐凌  黄宏伟 《隧道建设》2010,30(3):238-241
针对隧道初期支护和二次衬砌施作间隔时间短的工程特点,为掌握类似条件下衬砌受力变化的规律,分析二次衬砌钢筋轴力监测数据及相应的施工工况,研究隧道开挖、围岩蠕变、隧道衬砌刚度等因素对二次衬砌钢筋轴力变化的影响,如二次衬砌钢筋轴力变化曲线可分为2个明显的双曲线变化阶段:第一阶段主要受隧道开挖和隧道衬砌刚度的影响,围岩蠕变明显,在其作用下二次衬砌钢筋轴力明显增加,且轴力变化至少在1年后才趋于稳定,第一阶段大约持续33d,此阶段隧道衬砌刚度基本形成,而后二次衬砌钢筋变化进入第二阶段;第二阶段变化主要受围岩蠕变的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号