首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在建立用于卡尔曼滤波的INS和GPS姿态误差模型基础上,给出INS/GPS姿态组合系统的误差方程和量测方程,仿真结果表明:在通常的利用位置和速度作为观测量的INS/GPS组合导航系统中,加入GPS姿态观测量后,INS的位置误差、速度精度及姿态精度都得到较大提高,同时INS元件误差也能得到较好的估计。  相似文献   

2.
根据光纤陀螺(FOG)惯性测量装置的工作原理及惯性器件参数辨识的基本原理,采用传统的三轴转台标定法对光纤陀螺标度因数进行了研究。并针对光纤陀螺标度因数影响导航精度的实际工程需要,提出一种自适应误差补偿的方法,在较大程度上可以减小光纤陀螺标度因数非线性度,利用试验比对验证,结果证明该方法能有效减小光纤陀螺标度因数的非线性度误差,进而提高导航系统的使用精度。  相似文献   

3.
为解决INS/GPS两组合导航系统因观测信息不完整造成的姿态误差发散、系统稳定性较弱的问题,本文利用CNS搭建了基于INS/GPS/CNS的全观测信息导航系统。通过建立以位置误差、速度误差及平台失准角误差为观测量的系统数学模型,提出一种基于INS/GPS/CNS的全信息导航滤波算法,提高了系统的导航精度,改善了系统的稳定性。试验结果表明,本文所提算法相较于传统两组合滤波算法,各导航参数的精度在不同程度上得到改善,长航时条件下姿态误差收敛、稳定性较高。  相似文献   

4.
惯性导航系统(INS)长时间自主工作存在误差积累,采用INS与多普勒速度计程仪(DVL)组合的方案导航.针对组合导航系统状态维数较高,采用算法实现和估计精度优于传统扩展卡尔曼滤波的尺度变换模式的UKF(SUKF)方法.仿真结果表明,采用SUKF滤波方法实现INS/DVL组合导航是可行的.  相似文献   

5.
GPS接收机通过测量伪距进行载体位置的解算,而伪距测量精度与接收机的码延迟锁相环带宽有关。为了提高GPS接收机伪距测量精度,通常采用INS辅助、码/载波跟踪环技术。根据以C/N0为基础的伪距测量方差,分析INS辅助GPS接收机原理,研究INS辅助对接收机伪距测量精度的影响。在复杂电磁环境下,INS辅助GPS接收机是组合导航发展的方向,特别是紧耦合INS/GPS组合模式。  相似文献   

6.
针对电磁计程仪引入的海流速度可能会导致INS/LOG组合导航系统的卡尔曼滤波器输出发散问题,设计一种新的INS/LOG组合方式。以计程仪速度2次采样的差分值(即速度增量)作为系统观测量以抑制慢变海流的影响,采用基于延迟状态卡尔曼滤波算法,推导这种组合方式的观测方程,实现INS误差的最优估计。为抑制计程仪速度差分对其高频噪声的放大效应,采用巴特沃斯低通滤波器对其输出进行平滑处理。通过对3种INS/LOG组合方式的仿真比较,验证该算法的有效性。  相似文献   

7.
针对位置/速度模式的INS/GPS组合导航系统,确定其动基座下初始对准卡尔曼滤波方案,并进行计算机仿真。结果表明,卡尔曼滤波算法在动基座下INS/GPS组合导航系统初始对准中速度快、精度较高、对水平失调角有较好的估计效果,满足初始对准的基本要求。  相似文献   

8.
因无法对系统模型和噪声模型精确建模导致Kalman滤波器精度较低或发散问题,本文将H∞滤波理论引入重力仪/INS组合导航系统。文中首先给出了最优H∞范数的计算方法,解决了过去根据经验或多次试验确定该值的问题。组合导航系统包含位置、速度和姿态9维状态误差,利用重力仪实测重力异常与INS指示位置地图重力异常值之差作为观测信息对系统进行H∞滤波。仿真实验表明,该方法可极大地改善组合导航系统的鲁棒性和可靠性,明显提高系统的导航精度,减小滤波系统的阶次,加快对系统状态的滤波估计,对工程实际应用具有重要意义。  相似文献   

9.
为了提高船舶导航性能,本文研究基于INS/NSAP组合导航系统。首先建立组合导航系统的模型,然后在此基础上阐述了组合导航系统的主要构成,其为数据综合系统和数据转换系统。最后进行仿真实验,实验结果表明本文所采用的导航系统在经纬度船舶定位以及航向方面具有较高的精度和可行性。  相似文献   

10.
研制高精度船用激光陀螺捷联惯导系统是惯性技术领域的重要发展方向之一,本文从旋转惯导系统与无旋转惯导系统误差方程的区别出发,详细讨论了双轴旋转惯导系统中激光陀螺标度因数误差的调制机理,仿真分析了对称性标度因数误差和非对称性标度因数误差在典型双轴旋转调制方案下的传播特性,为激光陀螺双轴旋转惯导系统的设计提供理论参考。  相似文献   

11.
水下机器人航位推算导航系统及误差分析   总被引:1,自引:1,他引:0  
构建了基于GPS/航位推算的智能水下机器人(AUV)组合导航系统,阐述了水下机器人导航系统体系结构,详细介绍了基于强跟踪卡尔曼滤波和辛格模型的航位推算导航算法,解决了水下机器人难以建立精确数学模型的问题,最后结合海上实验数据深入地分析了产生航位推算误差的原因,并有针对性地提出了降低水下机器人航位推算导航系统误差的方案。  相似文献   

12.
介绍了舰船惯导系统的误差模型,针对该模型,提出了基于信息融合原理的联合卡尔曼滤波器的结构及算法.理论分析与仿真结果表明,该舰船INS/GPS/Loran-C组合导航系统的设计合理,算法具有全局最优性,能够满足系统的精度要求,且应用该联合卡尔曼滤波器可提高系统的容错性能.  相似文献   

13.
为解决传统INS/GPS两组合算法输出姿态精度低、长时间精度发散的问题,本文采用INS/GPS/CNS三组合的方式,结合联邦滤波器设计思路,提出一种基于INS/GPS/CNS的联邦滤波算法,以位置误差、速度误差和平台失准角作为观测量,通过设计INS/GPS/CNS三组合系统,对算法有效性进行试验验证。静态试验结果表明:本文所提算法相较于传统INS/GPS两组合算法,平台失准角精度可以提高一个数量级,且算法收敛、稳定、容错性强,工程应用意义重大。  相似文献   

14.
针对光纤陀螺(FOG)标度因数随温度呈非线性变化的特性,提出采用支持向量机对标度因数进行建模的方法,以减小光纤陀螺输出误差.利用实验数据对支持向量机对进行训练,获得标度因数的温度模型从而提高FOG的精度.同时将支持向量机对标度因数进行建模的结果与传统的最小二乘建模结果进行比较,验证采用支持向量机对标度因数建模是非常有效的.  相似文献   

15.
针对MIMU/GPS/磁传感器组合导航系统,进行了GPS信号调理、MEMS陀螺仪降噪以及磁传感器误差补偿研究。用双线性趋势外推法与MIMU陀螺仪信息对GPS信号进行处理,用AR(3)误差模型对MEMS陀螺仪去噪建模,用旋转标定方法对磁传感器进行误差补偿。通过对自行研制的MIMU/GPS/磁传感器组合导航系统与高精度组合导航系统的室外跑车比对试验,验证了上述信号处理及误差补偿方法的有效性。  相似文献   

16.
基于地形熵和ICCP算法的水下辅助导航组合方法研究   总被引:2,自引:0,他引:2  
基于ICCP算法的水下地形辅助导航可以很好地弥补INS长期误差积累的缺点.但ICCP算法在INS初始误差较大情况下易发散,为解决这个问题,提出用地形熵和ICCP算法的组合方法,即先用地形熵算法做粗匹配来降低INS的初始误差,用ICCP算法进行精匹配得到最佳匹配位置,在粗匹配阶段采用动态门限法,在精匹配阶段引入滑动窗口,这样可提高组合算法的快速性.仿真结果表明,组合算法是正确的和有效的.  相似文献   

17.
MIMU/GPS/磁罗盘组合导航系统算法研究   总被引:1,自引:1,他引:0  
在自行研制的微小型MIMU/GPS/磁罗盘组合导航系统上,深入研究了组合导航算法。该组合导航系统用FPGA芯片为主控制器,以TI公司高性能DSP芯片TMS320C6713作为导航解算协处理器。它采用了圆锥误差补偿和划船误差补偿的现代捷联导航算法和18阶状态变量的扩展Kalman滤波算法进行了组合导航参数计算。经室外车载试验表明,该组合导航系统的水平姿态误差小于0.2°,航向角误差小于0.3°,定位精度小于5m。  相似文献   

18.
针对INS/GPS/CNS组合导航系统的特点,采用了基于H。滤波的神经网络代替传统卡尔曼滤波器,利用INS/GPS、INS/CNS两个局部滤波器的输出值,通过联合滤波器进行线性最优估计,且进行了计算机仿真。仿真结果表明,该算法在满足系统精度和容错性要求的基础上,有效地改善了系统的自适应性、实时性、鲁棒性等性能,是组合导航系统理想的结构模型。  相似文献   

19.
针对船体变形对INS/GPS/CNS组合导航系统的影响,研究了船体变形的抑制、变形测量以及补偿方法.对船体变形特性以及变形对组合系统的影响进行分析研究,建立了船体变形的数学模型;提出了船体变形的补偿方案,进行了考虑船体变形的联合卡尔曼滤波器设计.仿真结果表明,所提出的船体变形补偿方法是切实可行的,有效地克服了船体变形对INS/GPS/CNS组合系统的影响,保证了系统的精度.  相似文献   

20.
在单独分析全球定位系统(GPS)、惯性测量装置、记程仪导航方法的基础上,为了提高导航的精确性与可靠性,提出了由低价惯性测量装置(INS)、单频差分全球定位系统(DGPS)和计程仪组合而成的集成导航系统;建立了相应的误差模型和系统观测模型,特别是组合系统下的线性测量模型;借助一种扩展的卡尔曼滤波方法,进行了仿真研究.仿真结果表明:与单独作用的导航系统相比,集成导航系统能较大地提高导航的精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号