首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Devising effective management strategies to relieve dependency on private vehicles, i.e. cars and motorcycles, depends on the ability to accurately and carefully examine the effects of corresponding strategies. Disaggregate choice models regarding the ownership, type and usage of cars and motorcycles are required to achieve this. Consequently, this study proposes integrated car and motorcycle models based on a large-scale questionnaire survey of Taiwanese owners of cars and motorcycles, respectively. Incorporating gas mileage and emission coefficients for different types of cars and motorcycles into the proposed models can enable the estimation and comparison of reductions in energy consumption and emissions under various management strategies. To demonstrate the applicability of the proposed integrated models, scenarios involving 10% and 30% increases in gas prices are analyzed and compared. The results indicate that gas price elasticities of cars and motorcycles are low, ranging from 0.47 to 0.50 for cars and 0.11 for motorcycles. Additionally, a high ratio of discouraged car users shifting to use of motorcycles neutralizes the effects of increased gas price in reducing energy consumption and emissions. Pollution of CO and HC even slightly increased because motorcycles are much more polluting in terms of CO and HC. At last, the reductions of energy consumption and emissions under 10% and 30% increase (or decrease) in other manipulating variables are also estimated and compared. The countermeasures for reducing ownership and usage of cars and motorcycles are then recommended accordingly.  相似文献   

2.
In 2014, highway vehicles accounted for 72.8% of all Greenhouse Gases emissions from transportation in Europe. In the United States (US), emissions follow a similar trend. Although many initiatives try to mitigate emissions by focusing on traffic operations, little is known about the relationship between emissions and road design. It is feasible that some designs may increase average flow speed and reduce accelerations, consequently minimizing emissions.This study aims to evaluate the impact of road horizontal alignment on CO2 emissions produced by passenger cars using a new methodology based on naturalistic data collection. Individual continuous speed profiles were collected from actual drivers along eleven two-lane rural road sections that were divided into 29 homogeneous road segments. The CO2 emission rate for each homogeneous road segment was estimated as the average of CO2 emission rates of all vehicles driving, estimated by applying the VT-Micro model.The analysis concluded that CO2 emission rates increase with the Curvature Change Rate. Smooth road segments normally allowed drivers to reach higher speeds and maintain them with fewer accelerations. Additionally, smother segments required less time to cover the same distance, so emissions per length were lower. It was also observed that low mean speeds produce high CO2 emission rates and they increase even more on roads with high speed dispersions.Based on this data, several regression models were calibrated for different vehicle types to estimate CO2 emissions on a specific road segment. These results could be used to incorporate sustainability principles to highway geometric design.  相似文献   

3.
Average roadway segment travel speeds play an important role in estimating stabilized running vehicle emissions. Currently stabilized, or hot, running emissions are computed based on speeds produced during the travel demand modeling process. Speed data from the travel forecasting models are widely recognized as being insufficiently accurate for air quality purposes. Frequently post-processing techniques are seen as the most cost-effective means of improving the accuracy of the speed estimates. Using the Sacramento Metropolitan area, this paper focuses on the impacts of different speed post-processors on regional peak period emissions inventories. The results indicated that most post-processed speeds produce consistently and significantly higher running emissions, particularly in locations with heavy traffic. The observed differences in emissions between different types of post-processed speeds vary with congestion level, pollutant type and the underlying approach encapsulated in the speed post-processor calculations. The Sacramento case study suggests that the post-processor used to develop speeds for the purposes of calculating on-road emissions inventories can significantly influence the emissions inventories.  相似文献   

4.
Electric two-wheelers have become a significant mode of transportation in China in the past decade. Though marketed and publicized by some as zero-emission vehicles, little past research has been done to quantify the environmental impacts of electric two-wheelers in China. This paper quantifies some of the environmental impacts of the production processes and use phase of electric two-wheelers and compares them to the environmental impacts of competing modes, including bicycles, buses, motorcycles and cars. The use phase emissions are quantified geographically with significantly higher emissions in coal rich regions, compared to regions relying more on hydropower. The results show that electric two-wheelers emit several times lower pollution per kilometer than motorcycles and cars, have comparable emission rates to buses and higher emission rates than bicycles. Lead is one pollutant on which electric two-wheelers perform poorly, because of their use of lead acid batteries.  相似文献   

5.
Taiwan’s inspection and maintenance (I/M) programs identifies high-emission motorcycles but, although these help reduce air pollution, they have been criticized for being cost-ineffective. This study examines the relationship between characteristics of motorcycles and hydrocarbon emissions in the Central Air Quality Basin of Taiwan. It is shown that engine size and type, age and manufacturer of a motorcycle significantly affect HC emissions. Larger-size engines emit smaller amounts of HCs; whereas older motorcycles emitted greater amounts. In addition, two-stroke-engine machines produced significantly higher HC emission levels than four-strokes. Variations in HC emissions testing are a result of various I/M testing locations and efficiency may be improved by modifying these.  相似文献   

6.
The influence of traffic calming measures on the speed of unimpeded vehicles has been investigated by evaluating differences in speed profiles obtained from various combinations of traffic calming measures. A case study has been conducted in the City of York (UK) focusing on traffic calming measures such as speed humps (flat-topped and round topped), speed cushions and chicanes implemented in sequence. Vehicles' passing times were simultaneously recorded at 16 points along each traffic calmed link. From these data a speed profile for each individual vehicle could be derived. An empirical model was developed using multiple regression analysis techniques based on data collected at three calibration sites. Speeds along these links were described as a function of the input speed, the type of measure and the distance between measures. The speed profile model was shown to be a good representation for the data from the calibration sites. It efficiently predicted speeds of unimpeded vehicles over a given combination of traffic calming measures in sequence. The validation process, based on data collected at three validation sites, also indicated that the model provided a good representation of the observed profiles at these sites, with the exception of the prediction of the effects of the chicanes on speeds. This type of measure was shown to produce diverse impacts on speeds which depended on the detailed design. While the model is a useful design tool, recommendations have been made for further enhancement to it.  相似文献   

7.
Driving cycles are used to assess vehicle fuel consumption and pollutant emissions. The premise in this article is that suburban road-work vehicles and airport vehicles operate under particular conditions that are not taken into account by conventional driving cycles. Thus, experimental data were acquired from two pickup trucks representing both vehicle fleets that were equipped with a data logger. Based on experimental data, the suburban road-work vehicle showed a mixed driving behavior of high and low speed with occasional long periods of idling. In the airport environment, however, the driving conditions were restricted to airport grounds but were characterized by many accelerations and few high speeds. Based on these measurements, microtrips were defined and two driving cycles proposed. Fuel consumption and pollutant emissions were then measured for both cycles and compared to the FTP-75 and HWFCT cycles, which revealed a major difference: at least a 31% increase in fuel consumption over FTP-75. This increased fuel consumption translates into higher pollutant emissions. When CO2 equivalent emissions are taken into account, the proposed cycles show an increase of at least 31% over FTP-75 and illustrate the importance of quantifying fleet speed patterns to assess CO2 equivalent emissions so that the fleet manager can determine potential gains in energy or increased pollutant emissions.  相似文献   

8.
A model of highway traffic noise is formulated based on vehicle types. The data were collected from local highways in Thailand with free-flow traffic conditions. First, data on vehicle noise was collected from individual vehicles using sound level meters placed at a reference distance. Simultaneously, measurements were made of vehicles’ spot speeds. Secondly, are data for building the highway traffic noise model. This consists of traffic noise levels, traffic volumes by vehicle classification, average spot speeds by vehicle type, and the geometric dimension of highway sections. The free-flow traffic noise model is generated from this database. A reference energy mean emission level (the basic noise) level for each type of vehicles is developed based on direct measurement of Leq (10 s) from the real running condition of each type of vehicles. Modification of terms and parameters are used to make the model fit highway traffic characteristics and different types of vehicle.  相似文献   

9.
Real-world vehicle operating mode data (2.5 million 1 Hz records), collected by instrumenting the vehicles of 82 volunteer drivers with OBD datalogger and GPS while they drove their routine travel routes, were analyzed to quantify vehicle emissions estimate errors due to road grade and driving style in rural, hilly Vermont. Data were collected in winter and summer for MY 1996 and newer passenger cars and trucks only. EPA MOVES2010b was used to estimate running exhaust emissions associated with measured vehicle activity. Changes in vehicle specific power (VSP) and MOVES operating mode (OpMode) due to proper accounting for real-world road grade indicated emission rate errors between 10% and 48%, depending on pollutant, chiefly because grade-related changes in VSP could shift activity by as many as six OpModes, depending on road type. The correct MOVES OpMode assignment was made only 33–55% of the time when road grade was not included in the VSP calculation. Driving style of individual drivers was difficult to assess due to unknown traffic operations data, but the largest differences between individual drivers were observed on rural restricted roads, where traffic conditions and control have minimal impact. The results suggest the importance of (1) measuring and incorporating real-world road grade in order to correctly assign MOVES emission rates; and (2) developing a driving style typology to account for differences in the MOVES emissions estimates due to driver variability.  相似文献   

10.
This paper investigates the fuel efficiency of commercial hybrid electric vehicles (HEVs) and compares their performance with respect to standard gasoline vehicles in the context of cold Canadian urban environments. The effect of different factors on fuel efficiency is studied including road driving conditions (link type, city size), temperature, speed, cold-starts and eco-driving training. For this study, fuel consumption data at the link level in real-world conditions was used from a sample of 74 instrumented vehicles. From the study fleet, 21 vehicles were HEVs. Among other results, the beneficial fuel efficiency merits of hybrid vehicles were demonstrated with respect to gasoline cars, in particular at low speeds and in urban (city) environments. After controlling for other factors, sedan HEVs were 28% more efficient than sedan gasoline vehicles. However, the low temperatures (below 0 °C) observed regularly during winter season in the study cities were identified as a detrimental factor to fuel economy. In winter, the fuel efficiency of HEVs decrease about 20% with respect to summer. Other factors such as eco-driving training, city size, cold start and vehicle type were also found to be statistically significant.  相似文献   

11.
The limited understanding of vehicular emissions in China, especially evaporative emissions, is one obstacle to establishing tighter standards. To evaluate tailpipe and evaporative emissions, two typical China IV vehicles and one Tier 2 vehicle with an onboard refuelling vapour recovery (ORVR) system were selected and tested. One of the China IV vehicles was fuelled with gasoline, E10 and M15, respectively, to investigate the effect of fuel properties on vehicular emissions. For each vehicle, cold-start tailpipe emission tests were conducted first, followed by an evaporation test. Based on the emission factors and real-world vehicle activity data, the annual tailpipe and evaporative hydrocarbon (HC) emissions of each vehicle were calculated and compared. The results show that E10 and M15 significantly reduced the tailpipe CO and particle number (PN) emissions but seriously aggravated the NOx emissions, especially for M15. The hot soak losses (HSLs) and diurnal breathing losses (DBLs) were slightly impacted by the fuel properties. The annual evaporative emissions with E10 and M15 were higher than that with gasoline. The ORVR system effectively controlled the evaporative emissions, especially for DBLs. Evaporative emissions from the China IV vehicles were 1.1–1.4 times the tailpipe HC emissions. Additionally, the evaporative emission factors of the China IV vehicles were almost 50% lower than the standard (2.0 g/test), whereas their annual evaporative emissions were almost 1.8–2.8 times higher than those from the Tier 2 vehicle. Therefore, controlling evaporative emissions currently remains a great need in China, and the ORVR might be a recommended evaporative control technology.  相似文献   

12.
Motorcycles are the third most common means of transportation in the megacity of Tehran. Hence, measurements of emission factors are essential for Tehran motorcycle fleets. In this study, 60 carburetor motorcycles of various mileages and engine displacement volumes were tested in a chassis dynamometer laboratory according to cold start Euro-3 emissions certification test procedures. For almost all of the tested samples, the average carbon monoxide (CO) emission factors were about seven times higher than the limits for Euro-3 certification. No motorcycle fell within the Euro-3 certification limit on CO emissions. 125 cc engine displacement volume motorcycles, which are dominant in Tehran, have the most total unburned hydrocarbons and CO emission rates, and they have less nitrous oxides (NOX) emission rates and fuel consumption compared to those of larger engine volume motorcycles. Calculation of fuel-based emission factors and moles of combustion products shows that about 40% of fuel consumed by 125 cc engine volume motorcycles burns to incomplete combustion products. This proportion is lower for larger engine volume motorcycles. Approximation of relative air–fuel ratio results shows very rich combustion in selected motorcycles. Using a carburetor fuel supply system, low engine compression ratio, aging, and no catalyst could be reasons for high emission rates. These reasons could possibly result in high ultrafine particles emission rates from motorcycles. Comparison of total motorcycle pollutant emissions to that of passenger cars from previous studies in Tehran shows that motorcycles contribute to pollutant much higher than their contribution to the total fleet or total travels.  相似文献   

13.
The Time-Dependent Pollution-Routing Problem (TDPRP) consists of routing a fleet of vehicles in order to serve a set of customers and determining the speeds on each leg of the routes. The cost function includes emissions and driver costs, taking into account traffic congestion which, at peak periods, significantly restricts vehicle speeds and increases emissions. We describe an integer linear programming formulation of the TDPRP and provide illustrative examples to motivate the problem and give insights about the tradeoffs it involves. We also provide an analytical characterization of the optimal solutions for a single-arc version of the problem, identifying conditions under which it is optimal to wait idly at certain locations in order to avoid congestion and to reduce the cost of emissions. Building on these analytical results we describe a novel departure time and speed optimization algorithm for the cases when the route is fixed. Finally, using benchmark instances, we present results on the computational performance of the proposed formulation and on the speed optimization procedure.  相似文献   

14.
To accurately investigate vehicle emissions that have become major contributors to global air pollutants and greenhouse gases, test conditions have been transferred from laboratory type approval test cycles to real-world driving conditions. In this study, the real-world driving emissions of carbon monoxide (CO), total hydrocarbons (THC), nitrogen oxides (NOx), and carbon dioxide (CO2) from one gasoline and two diesel Euro 6b light-duty passenger vehicles were investigated by a portable emission measurement system (PEMS) in Lyon, France. NOx and CO2 emission controls remain critical to addressing the real-world driving emissions of Euro 6b vehicles. Notably, the tested gasoline vehicle emitted higher CO2 emissions than diesel vehicles on all types of roads, especially on the urban road with an excess of 29.3–48.3%. The highest emission factors of gaseous pollutants generally occurred on the motorway for the gasoline vehicle, while on the urban road for diesel vehicles. In particular, for high-speed driving conditions, the gasoline vehicle gaseous emissions, especially NOx emissions, were more affected by acceleration than diesel vehicle emissions. In addition, the CO emissions, especially THC emissions, for the gasoline vehicle, were more influenced by warm-start, especially cold-start, than those for diesel vehicles.  相似文献   

15.
This paper develops inhomogeneous cellular automata models to elucidate the interacting movements of cars and motorcycles in mixed traffic contexts. The car and motorcycle are represented by non‐identical particle sizes that respectively occupy 6×2 and 2×1 cell units, each of which is 1.25×1.25 meters. Based on the field survey, we establish deterministic cellular automata (CA) rules to govern the particle movements in a two‐dimensional space. The instantaneous positions and speeds for all particles are updated in parallel per second accordingly. The deterministic CA models have been validated by another set of field observed data. To account for the deviations of particles' maximum speeds, we further modify the models with stochastic CA rules. The relationships between flow, cell occupancy (a proxy of density) and speed under different traffic mixtures and road (lane) widths are then elaborated.  相似文献   

16.
The vehicle fleet in the Ceará state has grown 180% over the last ten years. The growth of the resulting emissions is unknown in view of the expansion of this fleet in the greater Fortaleza Metropolitan Area (FMA). The largest fleet in the FMA is in the Fortaleza city itself, where flex fuel vehicles predominate (∼30%). Flex fuel motorcycles increased significantly (greater than 800%) between 2010 and 2015. This paper aims to estimate the road vehicle emissions of carbon monoxide (CO), non-methane hydrocarbons (NMHC), aldehydes (RCHO), nitrogen oxides (NOx), and particulate matter (PM) from the main road vehicle fleets of Fortaleza and its metropolitan area using a macrosimulation, bottom-up method, between 2010 and 2015. The results showed that road vehicle emissions of CO, NMHC and RCHO increased mainly by Otto cycle vehicles increase due to the introduction of flex fuel vehicles; however, the NOx and PM emissions noticeable reduction is also a result of emission policies that seed the introduction of new technologies. In 2015, more than 70,000 tons of CO (21.2 ton/1000person), 8000 tons of NMHC (2.5 ton/1000person), 290 tons of RCHO (0.09 ton/1000person), 15,000 tons of NOx (4.4 ton/1000person) and 600 tons of PM (0.2 ton/1000person) were emitted in the region under study. Comparing with other Brazilian regions, FMA emit higher levels of pollutants per inhabitant than the state of São Paulo and the state of Rio de Janeiro but lower levels than Porto Alegre city.  相似文献   

17.
The sensitivity of the pollutant emissions as regards the driving speed is demonstrated using emission functions currently available from the literature. An accurate and detailed knowledge of the actual driving speeds is then fundamental for emissions estimations and inventories. However, speed information is often limited and heterogeneous. Through a European synthesis, we examine the various means of investigations: surveys, vehicle instrumentation, traffic modelling, etc.The available statistics provide a high number of reference values for passenger cars and duty vehicles by broad categories and highlight the influence of numerous factors on speed: time period, city size and area, trips origin and destination and vehicle types. Speed estimations and ranges are proposed for the driving in urban areas, on rural roads and on motorways.The significant variations of the speed according to the time of the day, to the areas of a city, and the large dispersion for a given situation raise the question of using single average values. In fact, emissions estimation can be affected by 30% by the quality of the driving speed data.  相似文献   

18.
This study investigates the effect of traffic volume and speed data on the simulation of vehicle emissions and hotspot analysis. Data from a microwave radar and video cameras were first used directly for emission modelling. They were then used as input to a traffic simulation model whereby vehicle drive cycles were extracted to estimate emissions. To reach this objective, hourly traffic data were collected from three periods including morning peak (6–9 am), midday (11–2 pm), and afternoon peak (3–6 pm) on a weekday (June 23, 2016) along a high-volume corridor in Toronto, Canada. Traffic volumes were detected by a single radar and two video cameras operated by the Southern Ontario Centre for Atmospheric Aerosol Research. Traffic volume and composition derived from the radar had lower accuracy than the video camera data and the radar performance varied by lane exhibiting poorer performance in the remote lanes. Radar speeds collected at a single point on the corridor had higher variability than simulated traffic speeds, and average speeds were closer after model calibration. Traffic emissions of nitrogen oxides (NOx) and particulate matter (PM10 and PM2.5) were estimated using radar data as well as using simulated traffic based on various speed aggregation methods. Our results illustrate the range of emission estimates (NOx: 4.0–27.0 g; PM10: 0.3–4.8 g; PM2.5: 0.2–1.3 g) for the corridor. The estimates based on radar speeds were at least three times lower than emissions derived from simulated vehicle trajectories. Finally, the PM10 and PM2.5 near-road concentrations derived from emissions based on simulated speeds were two or three times higher than concentrations based on emissions derived using radar data. Our findings are relevant for project-level emission inventories and PM hot-spot analysis; caution must be exercised when using raw radar data for emission modeling purposes.  相似文献   

19.
Accelerated vehicle retirement programs offer owners of older vehicles incentives to scrap those vehicles earlier than might otherwise occur. Since older vehicles generally pollute more than newer vehicles, public agencies adopt such programs to reduce air pollutant emissions. Current methods of estimating the emissions reduction benefits of the programs are based on several assumptions and limited empirical evidence. This paper uses data from two large-scale programs in California to demonstrate that changing assumptions can significantly alter the assumed benefits of the program. The results show that vehicle retirement programs are likely to reduce emissions, but probably not as much as expected, particularly for nitrogen oxide and carbon monoxide emissions. The differences in estimates stem from several factors: scrapped vehicles are generally driven fewer miles than other vehicles of the same model year; some of the vehicles would have been scrapped without the program or not have lasted as long as expected; emissions for some pollutants may not be as high as predicted; and replacement vehicles are usually older than the fleet average.  相似文献   

20.
This paper assess whether a real-world second-by-second methodology that integrates vehicle activity and emissions rates for light-duty gasoline vehicles can be extended to diesel vehicles. Secondly it compares fuel use and emission rates between gasoline and diesel light-duty vehicles. To evaluate the methodology, real-world field data from two light-duty diesel vehicles are used. Vehicle specific power, a function of vehicle speed, acceleration, and road grade, is evaluated with respect to ability to explain variation in emissions rates. Vehicle specific power has been used previously to define activity-based modes and to quantify variation in fuel use and emission rates of gasoline vehicles taking into account idle, acceleration, cruise, and deceleration. The fuel use and emission rates for light-duty diesel vehicles can also be explained using vehicle specific power -based modes. Thus, the methodology enables direct comparisons for different vehicle fuels and technologies. Furthermore, the method can be used to estimate average fuel use and emission rates for a wide variety of driving cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号