首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用设计的有机朗肯循环系统回收某重型车用柴油机的排气能量,通过台架试验,获得了变工况下柴油机排气余热能分布特性。分析了有机工质蒸发压力、过热度以及柴油机工况变化对有机朗肯循环系统性能的影响,以系统净输出功率和热效率为优化目标,确定了适用于有机朗肯循环系统的最佳蒸发压力。研究结果表明,当有机工质蒸发压力为1.8 MPa时,有机朗肯循环系统的净输出功率最大可以达到12.69kW,热效率可以达到11.19%;将有机工质加热至过热状态并不能明显提高有机朗肯循环系统的净输出功率。  相似文献   

2.
为了充分利用 CNG 发动机的余热能量,根据 CNG 发动机的余热能分布特性设计了双有机朗肯循环系统,用来回收 CNG 发动机的排气能量、进气中冷能量以及冷却系统具有的能量。该双有机朗肯循环系统包括高温循环和低温循环,高温循环采用 R245fa 作为工质,用于回收 CNG 发动机排气能量;低温循环分别采用 R245fa , R1234ze 和 R1234yf 作为工质,用于回收进气中冷能量、高温循环冷凝过程中释放的能量以及发动机冷却系统的能量。在 CNG 发动机标定工况下,对双有机朗肯循环系统的参数敏感度进行了分析。结果表明:较高的高温循环蒸发压力和低温循环蒸发温度,较低的高温循环冷凝温度和低温循环冷凝温度可以提升双 ORC 系统的净输出功率和热效率;高、低温循环均选择 R245fa 的方案可以使系统具有较优的热力学性能。  相似文献   

3.
针对一台车用天然气发动机排气能量的变化规律,建立了带回热器有机朗肯循环系统,对比分析了采用纯工质R245fa和非共沸混合工质R416A时,带回热器有机朗肯循环系统的净输出功率、热效率、效率和单位工质能量输出密度。结果表明,采用非共沸混合工质R416A时上述各项性能指标均优于采用纯工质R245fa。最后,构建了天然气发动机-带回热器有机朗肯循环联合系统,采用非共沸混合工质R416A,分析了联合系统的热效率。结果表明,加装带回热器有机朗肯循环系统后,发动机热效率最大可提高7%。  相似文献   

4.
The ISG (Idle Stop and Go) system isvery useful in the automobile industry because it increases fuel consumption and reduces green house gas emissions. However, when the engine is on standby, the air-conditioning system does not work due to compressor inactivity, causing thermal discomfort to passengers. This study examines the thermal storage system, which is a cold storage heat exchanger integrated with a current evaporator. The experiments were conducted for an optimum cold storage heat exchanger design with various fin heights and densities, a number of stacking evaporator plates, refrigerant flow circuits inside the evaporator, and PCMs (Phase Change Materials) in the heat exchanger. The effects of coldness-release performance were examined with various ambient temperatures and air flow volume rates to the cold storage heat exchanger. The visualization of PCM’s freezing and melting was conducted with the cold storage heat exchanger. From the results, we found that the air discharge temperature of the air-conditioning system that was applied to the optimum cold storage heat exchanger was delayed around 540 seconds compared to the current air-conditioning system to reach 24 °C. Thus we can say that the cold storage heat exchanger integrated with an evaporator is an effective solution for ISG vehicles in maintaining thermal comfort in vehicle cabins during short engine stops.  相似文献   

5.
文章建立了跨临界CO2汽车空调系统的动态仿真模型。利用移动边界法和平均空泡系数法对蒸发器建立了集总参数模型;利用移动边界法对气冷器和中间换热器分别建立了集总参数模型;由于压缩机和节流阀的热惯性较小,利用经验公式对其建立了稳态模型。计算结果同实验数据的比较表明,该动态模型比较准确地体现系统实际的动态性能。  相似文献   

6.
通过比较8种循环工质在有机朗肯循环(ORC)系统中的热力过程,从系统性能、可靠性、环保等角度综合考虑,验证了R245fa用于ORC循环工质的优势。以康明斯某重型车用发动机为应用目标,设计了一套余热回收发电系统,通过回收增压空气、尾管废气、发动机废气的热量,用于发电。经过计算,该系统的余热回收效率为10.4%。  相似文献   

7.
根据二甲醚的热物理性质对二甲醚的制冷循环性能进行了分析,并在R134 a汽车空调系统上对二甲醚的制冷性能进行了测试。结果表明:由于二甲醚的气相和液相黏度都比较小,使用二甲醚作为制冷剂可以减小系统的阻力,有利于系统制冷性能的提高。二甲醚可以直接灌注式替代R134 a,但会造成蒸发器出口过热度降低,需对膨胀阀弹簧预紧力进行调整,才能充分发挥二甲醚的制冷性能。  相似文献   

8.
为解决瞬态工况下,汽车主动进气格栅(AGS)开度及风扇转速实时调整,换热器进风量时刻改变,热管理测试台架风机无法实时为换热器提供精准瞬态供风这一问题,应用计算流体力学(CFD)仿真技术,分析了换热器进风量与车速、AGS开度及风扇转速之间的关系,并构建了数学模型,模型预测误差小于6.6%。将该模型置于CANOE设备中,与VN1640设备及风机系统连接,可实时采集车速、AGS开度及风扇转速CAN信号,计算换热器进风量,从而控制风机输出相应风量,实现了台架风机为换热器提供精准、实时供风这一目标。  相似文献   

9.
在一台高压共轨增压中冷柴油机上,分析了负荷加载时间、冷却系统温度等边界条件对典型恒转速增转矩瞬变过程能量流及?流的影响规律。结果表明,柴油机负荷加载过程热效率和?效率总体呈现先上升后下降的趋势,且加载时间越短,进气迟滞引起的能量劣变会导致更低的能量利用率;改变中冷器冷却特性,提高加载过程进气温度将导致缸内扩散燃烧份额增加、传热时间更长,而冷却液温度降低则不利于改善瞬态工况缸内等效绝热特征,导致传热和排气过程能量损失及其中的可用能份额增大;调制负荷加载时间和冷却系统温度有助于改善柴油机加载过程进气响应特性、缸内热氛围状态和绝热特征,提升柴油机瞬态工况能量利用水平。  相似文献   

10.
In this study, NOx conversion characteristics of a urea selective catalytic reduction (SCR) system equipped on a heavy-duty diesel engine were evaluated through engine dynamometer bench tests over a scheduled world harmonized transient cycle (WHTC). Also, based on transient SCR simulations, the thermal management strategy to improve SCR NOx conversion efficiency was investigated. As a result, it was found that a selective increase in exhaust temperature at low temperature period would be a useful measure to increase SCR efficiency on WHTC mode. From the baseline SCR efficiency of around 98 % on WHTC mode, the current simulation results have shown that around 99 % level of SCR efficiency would be achievable by increasing exhaust temperatures with modifying diesel exhaust fluid (DEF) dosage. Another valuable contribution of this study is that the design guidelines for controlling exhaust temperature and DEF injection to obtain a target NOx conversion efficiency are presented for SCR systems of heavy-duty diesel engines on transient operating conditions.  相似文献   

11.
平行流蒸发器具有紧凑、高效的特点,在汽车空调中使用得越来越多。但其存在冷凝水排放不畅、制冷剂在扁管内分配不均等问题,在高湿情况下易发生结霜现象。本文针对某平行流蒸发器,在不改动空调系统其它部件的前提下,通过调整蒸发器本身结构、温度传感器位置及温度区间,实现了无结霜、出风温度均匀,空调系统性能得以提高。  相似文献   

12.
In this study, a parallel flow condenser and laminated evaporator for an automotive air-conditioning system were modified to improve performance. Gas-liquid separation type condensers, in which the condenser and receiver drier are integrated, and one-tank laminated type evaporators were developed, and their performances were investigated experimentally using HFC-134a. Heat transfer characteristics in the condenser are examined by means of air temperature, air velocity entering the condenser and inlet pressure of the refrigerant; heat transfer characteristics in the evaporator are examined by means of air temperature, relative humidity, flow rate of air, outlet pressure of refrigerant and superheat. Pressure drops for both evaporator and condenser are also measured, and correlations for pressure drop are derived for the condenser and evaporator, respectively. Air velocity and mass flow rate of the refrigerant have a significant effect on the overall heat transfer coefficient, and flow pass is not significantly influenced by the cooling capacity of the condenser. The overall heat transfer coefficient of the evaporator increases as air flow rate, air temperature and relative humidity increases.  相似文献   

13.
The ISG (Idle Stop and Go) systems are commonly used in modern automobiles because they are economical and environmental friendly technology. However, when a vehicle stops, the air-conditioning system stops, resulting in thermal discomfort to passengers in the cabin. This paper examines a cold storage heat-exchanger (CSH) integrated with an evaporator. The position of the cold storage parts inside a heat exchanger was analyzed through numerical simulations using FLUENT to create an adequate design for a CSH. The CSH performance was then examined with various airflow volumes and optimized experimentally in terms of the refrigerant flow circuit and fin density in the heat exchanger. Next, an experiment on the coldness release performance of the CSH was conducted in the air-conditioning system. The cold storage system with optimized CSH experiment resulted in lower air discharge temperatures (3.5 °C ~ 4.9 °C) than current air-conditioning systems, and delayed the warm-up by approximately 155 seconds to reach 18 °C temperature of air discharge. For this study, the CSH is an effective solution for the ISG-applied vehicles with less investment by transforming current air-conditioners’ structures more effectively.  相似文献   

14.
燃料电池汽车动力系统热管理   总被引:16,自引:1,他引:16  
介绍了燃料电池汽车动力系统热管理的基本概念,指出热管理研究主要包括关键部件热特性、热管理系统设升和集成优化、车用环境分析与控制、热管理专项技术4个方面,并分别对它们的研究特点与难点、研究方法和进展等进行了阐述。  相似文献   

15.
In this study, a combined system consisting of a heat pump and a PTC heater was developed as a heating unit in electric vehicles. The system consists of a compressor, a condenser, an evaporator, an expansion device and a PTC heater. Experiments were conducted to examine the steady-state performance and dynamic characteristics of this system. The compressor speed, outdoor air inlet temperature, and indoor air inlet temperature were varied, and the performance of the system was experimentally investigated. The heating capacity, compressor power consumption and COP were obtained. Warm-up experiments were performed to investigate the dynamic characteristics of the system with a heat load of 1.5 kW in the indoor chamber. For the heat pump system, the PTC heater and the combined system, the heating performance and efficiency were investigated to determine an optimal control method. The results of this study agree well with the experimental results available in literature. This study provides experimental data of good quality for heating system design and the development of electric vehicles.  相似文献   

16.
The potential for thermoelectric power generation (via waste heat recovery onboard automobiles) to displace alternators and/or provide additional charging to a vehicle battery pack has increased with recent advances in thermoelectric material processing. In gasoline fueled vehicles (GFVs), about 40% of fuel energy is wasted in exhaust heat, while a smaller amount of energy (30%) is ejected through the engine coolant. Therefore, exhaust-based thermoelectric generators (ETEG) have been a focus for GFV applications since the late 1980s. The conversion efficiency of modern thermoelectric materials has increased more than three-fold in the last two decades; however, disputes as to the thermal design of ETEG systems has kept their overall efficiency at limited and insufficient values. There are many challenges in the thermal design of ETEG systems, such as increasing the efficiency of the heat exchangers (hot box and cold plate), maintaining a sufficient temperature difference across the thermoelectric modules during different operating conditions, and reducing thermal losses through the system as a whole. This paper focuses on a review of the main aspects of thermal design of ETEG systems through various investigations performed over the past twenty years. This paper is organized as follows: first, the construction of a typical ETEG is described. The heat balance and efficiency of ETEG are then discussed. Then, the third section of this paper emphasizes the main objectives and challenges for designing efficient ETEG systems. Finally, a review of ETEG research activities over the last twenty years is presented to focus on methods used by the research community to address such challenges.  相似文献   

17.
Nanofluids, the fluid suspensions of nanomaterial, became a promising fluid that is invoked when heat transfer increase is required. Using of nanofluids as a coolant in the engine radiators is a crucial topic for the thermal engines manufactrers due to the expected enhancement in the cooling process. In this study, Two nanofluids (Al2O3/water and CuO/water) flowing in a flat tube of radiator are investigated numerically to evaluate thermal and flow performance. The resizing process for the radiator is performed by using nanofluid instead of water flow. A significant reduction in the radiator volume is achieved due to marked improvement in the heat transfer performance while, the required pumping power after this reduction in the volume is increased over that needed for base fluid. The normalized heat transfer (heat transfer to the pumping power) is found to be a function of both Reynolds number and nanofluid concentration ratio while the ratio of the normalized heat transfer is found to be dependent only on the nanofluid concentration ratio. These dependencies are formulated as general correlations.  相似文献   

18.
《JSAE Review》1995,16(3):263-268
Composite materials made of ceramics and metal are already used in heat resistant parts, such as pistons. Functionally gradient materials (FGM) are new composite materials that reduce the thermal stress caused by the difference of thermal expansion and that are resistant to super high temperature.In order to support the design of FGM, we have developed computer programs that analyze the transient heat transfer and the transient thermal stress of FGM by the finite element method (FEM). In this paper, the thermal stress analysis by these programs of an FGM plate, composed of Zr02 and Ti-6A1-4V, is discussed.  相似文献   

19.
车辆传动装置部件温度的热网络计算方法   总被引:2,自引:0,他引:2  
分析了车辆液力机械传动装置内部摩擦生热与传热过程,建立了完整的传动装置热网络模型,提出了基于热网络法的传动装置部件温度计算方法,确定了总体计算流程.对某型车辆液力机械传动装置部件温度进行了计算,得到了部件温度的详细分布,预测了传动装置中关键部件温度随大气环境温度的变化规律.计算结果与试验值符合较好,证实了该方法的有效性.  相似文献   

20.
A junction block (or electrical distribution box) is electrical equipment that has been densely assembled from components such as buss bars, relays, and fuses to control the electric current flow in vehicles. Joule heat is generated in these parts as a result of electrical bulk resistance and electrical contact resistance. The generation of heat increases due to the complex behavior of modern vehicle electronic systems. Overheated parts can be damaged during operation due to thermal energy. The thermal assessment of a junction block is an important issue in automobile development. We suggest a methodology to simulate the transient temperature distribution of buss bars and electrical relays in a junction block. A finite element formulation of a coupled electro-thermal problem, which includes the effect of Joule heating, is introduced to the simulation. Finite element analysis (FEA) and experiments at the component level of buss bars and relays are conducted to investigate the thermal performance of a junction block. To verify the accuracy of the FEA procedure, the temperature history obtained by FEA is compared with the results obtained from experiments. The thermal-electric analysis of a typical junction block assembly is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号