首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为保证汽车侧倾稳定角试验过程中的车辆安全,设计开发了一种用于防止试验车辆发生侧翻安全事故的非接触式防翻装置。该装置通过液压缸驱动防护支撑板,实现支撑板与侧翻试验台上的被试车辆保持一定安全距离的跟随运动,避免车辆达到侧倾稳定临界角时发生侧翻。经现场试验表明,该装置能够实现设计功能,在不影响试验结果的情况下保证车辆安全。  相似文献   

2.
Before 2009, rollover in vehicle accidents had not been significantly studied not only because its rate is lower than other types of accidents but also because it had been easy to meet the rollover regulation, the FMVSS 216 Roof Crush Resistance target. The regulation only requires that the strength-to-weight ratio (SWR) be 1.5, i.e., it was acceptable when the roof could withstand a force of only 1.5 times the vehicle??s weight. In other words, rollover is not considered an important safety factor. However, presently, the situation has completely changed. Rollover is now considered a key safety factor. Recently, the number of rollover incidences has been increasing, reaching as much as the number of front, side and rear accidents. Furthermore, the IIHS has begun to require that the roof must withstand a force of 4.0 times the vehicle??s weight, a more severe restriction than FMVSS. To satisfy this requirement, many manufacturers, universities and institutes are studying the topic. This paper focuses on changing the body structure to minimize injury to the occupant when rollover occurs and help rollover safety performance become excellent. This paper draws on a simple analysis that is based on general factors: changes in the material, the addition of welds and additional reinforcements. The best result will be determined, as described by this paper.  相似文献   

3.
The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle systems for all possible dynamic situations, including the worst case scenarios such as rollover, spin-out and so on. Although the known NHTSA Sine with Dwell steering maneuvers have been applied for the vehicle performance assessment, they are not enough to estimate other possible worst case scenarios. Therefore, it is crucial for us to verify the various worst case scenarios, including the existing severe steering maneuvers. This paper includes useful worst case scenarios based upon the existing worst case scenarios mentioned above and worst case evaluation for the vehicle dynamic controller in a simulation basis and UCC HILS. The only human steering angle was selected as a design parameter here and optimized to maximize the index function to be expressed in terms of both yaw rate and side slip angle. The obtained scenarios were enough to generate the worst case scenario to meet NHTSA worst case definition. It has been concluded that the new procedure in this paper is adequate to create other feasible worst case scenarios for a vehicle dynamic control system.  相似文献   

4.
本文基于49CFR Part 575法规对车辆防侧翻评价指标进行初步探索,并利用CarSim软件建立具有高质心特性的SUV车辆模型,对车身、制动系统、转向系统、轮胎及悬架等子模块进行了定义,完成非线性动力学模型的建立,结合汽车动态控制系统,建立车辆防侧翻控制策略,同时,利用CarSim与Matlab/Simulink进行联合仿真,模拟SUV在极限工况Fishhook环境下的工作情况,验证防侧翻的作用效果,结果表明:防侧翻策略有效的减小了侧向加速度,使得车辆的抗侧翻能力有所增强,汽车的安全性与稳定性得到了有效的保证,为实车试验提供科学依据。  相似文献   

5.
Vehicle rollover represents a significant percentage of single-vehicle accidents and accounts for over 9000 fatalities and over 200,000 non-fatal injuries each year. Previous research has yielded rollover stability control systems that are effective in on-road conditions. Accident statistics show, however, that over 90% of rollovers involve road departure, during which a vehicle may encounter sloped and rough terrain while travelling at high speed. A critical element of most rollover stability control systems is a metric that monitors a vehicle's nearness to rollover. Most metrics, however, are designed for use on flat, level surfaces characteristic of on-road terrain. In this paper, a new stability metric, termed the stability moment, is proposed that is accurate on terrain surfaces with arbitrary geometry, which allows it to be used in road departure scenarios. The metric is based on an estimate of the distribution of wheel–terrain contact forces. The metric can be calculated on line in real time, using only practical, low-cost sensors. The metric is compared in simulations and experimental studies to existing stability metrics and is shown to exhibit superior performance, particularly in off-road conditions.  相似文献   

6.
机动车驾驶为运输业中特殊工作,所以对该行业从业人员要求较高。安全驾驶旨为预防交通事故,确保行车安全。汽车驾驶安全性,不仅与汽车自身安全性能相关,而且与驾驶者行车中安全操控密不可分,通过一系列的措施增强驾驶者主动安全意识,可降低行车风险。基于此,有必要掌握汽车驾驶员素质对行车安全影响,了解事故发生的客观规律,提出针对性的预防措施,将各类不安全隐患遏制于萌芽时期,为行车安全做以保障。  相似文献   

7.
波罗轿车的被动安全性设计综述   总被引:1,自引:0,他引:1  
被动安全性是轿车开发中的一项重要内容,对于小型轿车由于其车身尺寸较小,显得更加重要。波罗轿车的被动安全性设计是建立在大众公司多年公司多年来对全世界各种碰撞安全法规和交通事故的研究基础之上,涵盖了正面、偏置、侧面、后部、翻滚以及车对车碰撞等各个方面,为小型轿车的被动安全性树立了典范。  相似文献   

8.
铰接车辆转向侧翻过程仿真   总被引:2,自引:1,他引:2  
建立了铰接式车辆转向侧翻过程的数学模型,根据铰接式车辆在转向侧翻过程中的一些重要特性,研究和分析了铰接车辆侧翻的影响参数,通过过程仿真,获得了实现铰按车辆安全转向的车速临界值.  相似文献   

9.
为提升半挂汽车列车在高速公路弯道下坡路段的运行安全,采用TruckSim仿真软件,构建了车辆模型、道路模型和驾驶人动力学仿真模型;基于蒙特卡罗可靠性分析法,分别建立了半挂汽车列车发生侧滑失效、侧翻失效、折叠失效和系统失效的功能函数,并选取设计速度80 km·h-1的高速公路为研究路段,通过进行大量车辆动力学仿真试验,对不同圆曲线半径、纵坡坡度、路面附着系数、车速和车辆总质量对半挂汽车列车的运行安全的影响进行了数值分析。研究结果表明:半挂汽车列车发生侧滑和侧翻的概率随着圆曲线半径的增加而显著降低,在一般最小半径400 m的情况下,半挂汽车列车发生侧滑失效和侧翻失效的概率趋近于0;随着下坡坡度的增加,半挂汽车列车发生侧滑失效和侧翻失效的概率基本呈线性增长趋势;车速对于半挂汽车列车运行安全的影响尤为显著,当车速均值由60 km·h-1增加到90 km·h-1时,发生侧滑失效和侧翻失效的概率分别增加了634倍和336倍;车辆总质量的增加对半挂汽车列车侧翻有显著影响;在路面附着系数较低的条件下,半挂汽车列车的主要事故形态为侧滑和折叠,在路面附着系数较高的情况下,半挂汽车列车的主要事故形态为侧翻。因此,在道路设计中,应避免极限最小半径与陡坡组合,严格限速和限载可确保半挂汽车列车的运行安全性能。  相似文献   

10.
为防止自动驾驶条件下矿用货车发生侧翻,对依靠规划控制层实现侧翻事故的主动预防方法进行研究.针对该问题先建立矿用货车侧倾数学模型,推导静态稳定因子(Static Stability Factor,SSF)与车辆侧倾稳定极限(Roll Stability Limit,RSL)公式.利用TruckSim仿真软件完成水平路面1...  相似文献   

11.
《JSAE Review》1999,20(1):101-108
Previous studies of safety during vehicle collision pay attention to phenomena in the short time from starting collision, and the behaviour of rollover is studied separately from that at collision. Most simulation of traffic accidents are two-dimensional. Therefore, it is indispensable for vehicle design to analyze three-dimensional and continuous behaviour from crash till stopping. Accordingly, in this study, three-dimensional behaviour of two vehicles at collision is simulated by computer using dynamic models. Here, by comparison of the calculated results with real vehicles' collision test data, it is confirmed that the dynamic model of this study is reliable. It was confirmed in this study that the dynamic model thus established was applicable to various types of collisions and vehicles.  相似文献   

12.
ABSTRACT

This paper presents state-of-the art within advanced vehicle dynamics of heavy trucks with the perspective of road safety. The most common accidents with heavy trucks involved are truck against passenger cars. Safety critical situations are for example loss of control (such as rollover and lateral stability) and a majority of these occur during speed when cornering. Other critical situations are avoidance manoeuvre and road edge recovery. The dynamic behaviour of heavy trucks have significant differences compared to passenger cars and as a consequence, successful application of vehicle dynamic functions for enhanced safety of trucks might differ from the functions in passenger cars. Here, the differences between vehicle dynamics of heavy trucks and passenger cars are clarified. Advanced vehicle dynamics solutions with the perspective of road safety of trucks are presented, beginning with the topic vehicle stability, followed by the steering system, the braking system and driver assistance systems that differ in some way from that of passenger cars as well.  相似文献   

13.
为研究车辆制动工况下路面抗滑性能对弯道行车安全的影响,以车辆动力学分析软件AD-AMS为仿真平台,提出采用轮胎解析参数、整车参数、路面抗滑值构建耦合关联的车辆-轮胎-路面模型,在此基础上研究不同湿滑路面状态下弯道行驶车辆的运动学参数值变化情况,探索路面抗滑性能与表征行车安全风险的运动学参数值之间的关系.研究结果表明,路面抗滑性能影响车辆运动学参数值变化是诱发交通事故的主要因素.较低的弯道路面抗滑性能易使车辆在制动时出现急速横摆、甚至侧翻的交通事故;车辆两侧轮胎接地面抗滑值不均衡对弯道行车安全的影响高于对直道行车安全的影响,车辆极易在弯道制动时出现因抗滑值不均衡而无法保持有效转弯半径、进而冲出车道的交通事故.研究可为制定弯道行车安全的保障措施提供理论依据.   相似文献   

14.
轿车白车身静刚度分析   总被引:2,自引:0,他引:2  
采用HyperMesh和ANSYS软件建立了某国产中高级轿车白车身的有限元模型。通过对其进行刚度分析和对国内外同级别的车型进行比较来判断该轿车的刚度情况.针对分析结果和相关车型的比较后对该车刚度情况做了一定的分析,通过相关试验进行验证,为后续相关的优化和改进提供了依据。  相似文献   

15.
A bus rollover is one of the worst vehicle accidents that can occur. Because of the large numbers of passengers, the casualties in a bus rollover are often high and severe. The compliance with rollover safety standards for buses and coaches is mandated by law. This paper presents a comparative analysis of the physical meanings of regulation number 66 of the Economic Commission for Europe (ECE R66) and standard number 220 of the American Federal Motor Vehicle Safety Standards (FMVSS 220). This comparison was carried out using a LS-DYNA finite-element analysis. After performing a comparative analysis following ECE R66 and FMVSS 220 assessments, the investigation further demonstrated the distortion configuration of the vehicle superstructure through the absorbed energy and its distribution over the vehicle and in sections of vehicle superstructure as well as the violation of the passenger compartment under the rollover testing conditions of both ECE R66 and FMVSS 220. Great differences were found between ECE R66 and FMVSS 220 in distortion configuration, reflecting differences in capability and rollover testing conditions. These findings provide a means of evaluating bus superstructure strength and provide guidelines useful in the assessment of regulations applied to the evaluation of bus rollover strength.  相似文献   

16.
本文主要对汽车安全驾驶以及应急处理技术进行研究,分析影响汽车安全驾驶主要安全事故,从而提出相应的改善措施,意在确保驾驶安全,避免发生安全事故,希望对相关工作人员具有一定的参考价值。  相似文献   

17.
Vehicle safety is a major concerns for researchers, governments and vehicle manufacturers, and therefore a special attention is paid to it. Particularly, rollover is one of the types of accidents where researchers have focused due to the gravity of injuries and the social impact it generates. One of the parameters that define bus lateral behaviour is the acceleration threshold limit, which is defined as the lateral acceleration from which the rollover process begins to take place. This parameter can be obtained by means of a lateral rollover platform test or estimated by means of mathematical models. In this paper, the differences between these methods are deeply analysed, and a new mathematical model is proposed to estimate the acceleration threshold limit in the lateral rollover test. The proposed model simulates the lateral rollover test, and, for the first time, it includes the effect of a variable position of the centre of gravity. Finally, the maximum speed at which the bus can travel in a bend without rolling over is computed.  相似文献   

18.
Traffic simulation models often neglect the important role of motorcycles and assume a flow of various combinations of cars. This paper addresses how much different would be the behavior of a car driver while following a motorcyclist compared to cases in which a car follows another car, along with a segment of an urban highway in the non-congested flow. Recognition of such a difference might help to develop existing simulation models and to improve the behavior of car drivers in such a way to lead to lower accidents with motorcycles. To reach the goal, a GHR (Gazis-Herman-Rothery) model for car following is applied and data have been collected by video cameras during 15?min time intervals in three different days. Analysis of 198 car-motorcycle and 374 car-car following observations has indicated that when a car driver follows a motorcycle, keeps a higher headway (about 10?m in the low speed) with a lower acceleration/deceleration in comparison with the situation in which car driver follow another one. It means that the behavior of the follower car driver would be more cautious compared to situations in which a car driver follows another one, especially in space headways <10?m. In addition to main findings of the paper for developing a more realistic simulation program, the paper also addresses that in cases when the required safe space between a car and a motorcycle would be endangered, a warning message could be generated for the car driver (by implementing an in-veh ITS technology) to warn driver about keeping a safe distance.  相似文献   

19.
This paper deals with the study of running dynamic effects for a partially filled railway tank vehicle. A computational fluid dynamics model in 2D is established and used to define the motion of the sloshing fluid and the forces generated on the tank, for curving conditions typical of railway freight transport. From these results, an equivalent mechanical model is identified which is able to correctly reproduce the forces generated on the tank. Finally, a mathematical model is defined for the entire freight car, including the bogies with primary suspensions, the tank and a discrete number of equivalent models positioned at different places along the longitudinal axis of the tank. This model is used to simulate the dynamics of the tank for a variety of curve geometries, train speeds and fill levels. By these simulations, derailment and rollover risks are evaluated and the most critical conditions for running safety are defined. Results show that sloshing can increase significantly the risk of tank rollover whereas its influence on the risk of derailment is minor.  相似文献   

20.
本文通过对国内某高速公路交通事故、非现场违法原始数据进行处理和分析,对高速公路交通事故的组成、原因和空间分布进行分析,探索事故与非现场执法设备建设之间的关系,实证分析交通流量、时间、天气等因素对高速公路交通事故以及交通违法的影响。通过分析,得出影响高速公路交通事故潜在的分布规律和较为显著的影响因素,可有效指导高速公路交通管理部门根据不同情况有针对性地提出科学有效的事故预防对策,对优化高速公路交通安全形势产生积极影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号