首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
水火弯板成形因素对横向收缩量的影响   总被引:2,自引:0,他引:2  
水火弯板自动化的研究需要定量化地确定横向收缩量.本文采用实验和有限元分析相互结合的方法来研究线加热过程中的横向收缩量.首先,利用水火弯板实验的结果标定有限元分析中呈高斯分布的热源模型参数,而后利用数值模拟的方法探讨水火弯板成形因素对横向收缩量的影响.这些因素包括自然对流换热系数、有无水冷、热源速度、加热焰道长度、燃气流量和横向曲率半径.研究结果表明:自然对流换热系数和横向曲率半径对横向收缩的影响很小;跟踪水冷可以形成有效的收缩;不同燃气流量的热输入有不同的横向收缩变形.本文提出了综合考虑火焰速度、火焰有效功率、火焰作用半径和钢板厚度的热源体能量模型,该模型可以更好地反映这些热输入影响参数所引起的综合作用.  相似文献   

2.
水火弯板工艺参数和角变形关系的有限元分析   总被引:1,自引:0,他引:1  
对于完全采用水火弯板成形船体板的情况,根据要加工形成的角变形量给出合适的工艺参数是水火弯板成形系统必须解决的问题.为了确定工艺参数,必须探索加热条件和角变形之间的关系.为此,文章提出了利用小板的变形来研究大板变形情况的相似性规律,并且用体功率模型来综合地考虑火焰速度、火焰有效功率、火焰作用半径和钢板厚度对角变形所引起的综合作用.基于这些分析方法,利用三维有限元法分析热源气体流量和热源速度对于不同厚度钢板的成形关系.  相似文献   

3.
文章基于ANSYS-APDL语言,建立了三维移动式钢板高频感应加热成形电磁—热—力多物理场耦合有限元模型,并使用线圈单元选取法实现了感应线圈热源模型的移动。文中采用此模型研究了Q345钢板在不同加热功率下的变形情况,得到如下结论:钢板加热时受热不均匀,加热区上下表面温差很大最后阶段出现端部效应;随着加热功率的增大,钢板表面瞬时最高温度也增大;加热过程中钢板最大压应力出现在上表面加热区前端,最大拉应力出现在钢板上表面加热区的前方;冷却后钢板最大压应力出现在加热线末端,最大拉应力出现在加热线中段区域;开始时加热区上翘,已加热区冷却下凹,当热源接近末端时,已加热变形区上翘,钢板经过冷却后,整体下凹;随着加热功率的增大,加热区域Y方向变形 Uy越大,钢板弯曲角度线性增大,曲率半径先减小后趋于定值;改进后模型的模拟结果与相同实验参数下的实验结果基本吻合,与传统模拟方法相比更接近实验结果。  相似文献   

4.
针对钢板移动式感应加热成形问题,采用正交试验分析得出影响钢板感应加热的主要因素是加热速度和空气间隙,并利用数值模拟分析这两个工艺参数与钢板变形之间的关系。结果表明,加热速度和空气间隙会影响加热深度,进而对横向收缩量、横向角变形和垂向位移有显著的影响。最后,在数值计算样本的基础上推导横向收缩量的回归数学模型,发现回归模型的计算值与试验值之间的相对误差在工程允许范围内,证明回归模型的计算结果可靠。  相似文献   

5.
周宏  蒋志勇  李敢 《船舶工程》2011,33(1):57-60,64
采用ANSYS软件对低碳钢平板的高频感应线状加热弯板成形过程进行热弹塑性有限元分析,利用相关数值结果定性分析加热功率、热源移动速度成形热过程中板材温度场及最终面内收缩变形和角变形的影响,为船板成形自动化加工提供数据支持.  相似文献   

6.
以18.000 mm厚的船用AH36钢板为研究对象,开展电磁感应加热弯曲成型试验并测量板材的瞬态温度,采用手持式三维扫描仪获取板材点云数据,利用后处理软件得到板材面外弯曲变形云图。基于热-弹-塑性有限元分析,模拟板材电磁感应加热弯曲成型过程,温度和面外弯曲变形计算结果与测量数据较吻合,验证建立的数值模型的准确性。基于高通量的有限元分析,建立热源移动速度与横向弯曲角度的数学关系。针对单曲率板材,提出内接折线法和外切折线法拟合板材弯曲形状,给出相应的板材加热线位置和热源移动速度等工艺参数,进行热-弹-塑性有限元分析。计算结果表明,由提出的两种方法得到的面外弯曲变形均与目标曲率板的弯曲形状相吻合,证明内接折线法和外切折线法应用于实际工程的可行性。  相似文献   

7.
针对影响感应加热能量参数的不同组合,利用数值模拟方法探讨了以感应加热为热源进行水火弯板加工局部收缩量与各参数关系的影响规律,得出钢板表面局部收缩量与各加工参数之间的关系;据此对各种参数组合情况下变形实验的测量数据建立回归模型,利用回归分析程序计算分析得到钢板的局部收缩量的回归方程,试验测量与回归计算结果进行分析比较验证,结果令人满意。  相似文献   

8.
基于ANSYS有限元软件,以SC单回路感应器为热源,建立船用钢板感应加热的三维有限元数值模型,并对感应加热过程中钢板的涡流功率分布和升温过程进行分析.研究表明,在加热钢板过程中,感应器轴线方向上涡流生热区域的扩散和最高生热区域的转移导致主要加热区域略微偏离钢板成形的加热线;涡流生热区域向钢板厚度方向的扩散受电磁特性的影响,无法使整块钢板都直接生热;钢板上表面加热过程可分为3个阶段,虽然升温速度逐渐放缓,但在温度接近居里温度时会迅速上升.  相似文献   

9.
在船体曲面板的水火弯板工艺中,钢板表面一般布置有多条加热线,然而,加热线间距对于钢板变形的影响一直是该工艺的研究难点.为此,以2条平行加热线的钢板感应加热变形为研究对象,采用试验和数值计算相结合的方法,研究加热线间距对于钢板变形的影响.结果 表明,当加热线间距大于200 mm时,加热线之间的相互影响可以忽略.  相似文献   

10.
[目的]在钢板感应加热的数值计算中,通常采用磁热耦合计算方法。该方法虽然结果准确,但建立的模型非常复杂,且计算需耗费大量时间。为此,[方法]通过计算和理论推导,提出一种高频感应加热热源的简化计算方法,以一个空间函数形式的热源模型来代替复杂的电磁热耦合计算。使用COMSOL Multi-physics软件建立钢板静止式感应加热有限元模型,运用磁热耦合计算方法和简化方法分别计算钢板加热后的温度场,并对采用2种方法得到的温度场分布结果进行比较,以验证简化方法应用到热源模型的可靠性。[结果]结果表明,运用所提简化计算方法得到的热源模型具有可靠性。[结论]相比于磁热耦合的方法,采用热源简化方法计算钢板感应加热过程,可以有效缩短计算时间,且在钢板移动式感应加热的计算中,能很好地解决模型过于复杂、计算时间过长等问题。  相似文献   

11.
为了获得核电用厚板多层多道焊的角变形动态过程,通过试验测试和有限元分析相结合的方法研究了40 mm厚Q345B钢板角变形过程.基于ANSYS有限元分析软件,开发了考虑移动热源、材料非线性和几何非线性的热弹塑性有限元计算方法.同时,采用位移传感器间接测试了焊接角变形过程.研究结果表明:Q345B厚板多层多道焊角变形动态过程可分为变形阶段和稳定阶段.单个焊道引起的角变形增加量呈先增大后减小的趋势.此外,综合考虑热输入与板厚叠加作用的热输入理论(Q/h~2)可以解释厚板多层多道焊角变形动态过程.  相似文献   

12.
采用带间隙双回路反向电流(ODIG)感应器作为热源,基于ANSYS多物理场耦合数值模拟方法,结合感应器及周围空气动态移动方法,建立移动式电磁-热交互耦合数值模拟模型。将获得的瞬态温度作为载荷,进行热-弹塑性数值分析,研究船用钢板移动电磁感应加热温度分布和变形分布。分析不同工艺参数(感应器与钢板间隙g、钢板厚度H、电流频率F、电流峰值I_(peak)和移动速度v)对热成形(最高温度T_(um)、宽度b和厚度h)和变形(横向收缩δ_z和横向角变形θ_z)特性的影响。结果表明:温度云图为带预热的双椭圆外形;影响热成形特性的主要因素为I_(peak)、v和g;影响变形最主要的因素是I_(peak)和H。  相似文献   

13.
采用带间隙双回路反向电流(ODIG)感应器作为热源,基于ANSYS多物理场耦合数值模拟方法,结合感应器及周围空气动态移动方法,建立移动式电磁-热交互耦合数值模拟模型。将获得的瞬态温度作为载荷,进行热-弹塑性数值分析,研究船用钢板移动电磁感应加热温度分布和变形分布。分析不同工艺参数(感应器与钢板间隙g、钢板厚度H、电流频率F、电流峰值I_(peak)和移动速度v)对热成形(最高温度T_(um)、宽度b和厚度h)和变形(横向收缩δ_z和横向角变形θ_z)特性的影响。结果表明:温度云图为带预热的双椭圆外形;影响热成形特性的主要因素为I_(peak)、v和g;影响变形最主要的因素是I_(peak)和H。  相似文献   

14.
钢板弯曲工艺中的高频感应加热过程数值分析   总被引:2,自引:0,他引:2  
作为电磁感应热源应用于船体板水火弯板工艺的一项基础研究,首先阐述了钢板感应加热的磁热耦合理论,然后利用ANSYS软件代码开发了钢板感应加热的有限元模型.数值计算结果和实验结果相一致,并得出了钢板感应加热过程中的电磁场分布规律和和温度随时间的变化规律,计算结果符合感应加热的特征.  相似文献   

15.
基于固有变形理论和弹性有限元分析,以氧-乙炔火焰加热的固有变形为输入参数,应用弹性有限元分析预测船体板材的面外变形;对比两种不同加热模式下板材受热弯曲成形的效率。研究分析表明,弹性有限元分析可高效地预测板材成形的效果,且从边缘到边缘的平行线加热模式,更有利于板材的弯曲成形。  相似文献   

16.
线加热有许多其他名称,例如热线弯曲、火焰弯曲、回火加热、线弯曲、平面加热和水火弯板等。无论叫什么,其原理都一样:钢板局部加热所产生的应力,使钢板局部收缩,产生永久变形。从40年代起,人们就使用线加热来矫正钢结构的变形,通过加热钢板的适当部位,然后冷却,达到消除应力和矫正变形的目的。  相似文献   

17.
用固定热源预测焊接结构的变形与残余应力,相比移动热源可有效地提升计算效率,但热源长度对计算精度的影响少有讨论。对此,以Q235钢T型焊接接头为研究对象,分别采用X射线法和三坐标测量仪测量接头的残余应力和焊接变形。基于热-弹-塑性有限元分析,采用不同分段长度的固定热源模拟电弧焊过程,获得接头的温度场、应力场和焊接变形,并通过和移动热源模拟结果及试验数据进行比较,验证了固定热源的可行性。最后,讨论了固定热源长度对焊接变形与残余应力计算精度的影响。结果表明,采用移动热源与固定热源模拟焊接热输入均可精准预测中厚板接头的焊接变形,而采用固定热源需合理划定分段长度。当固定热源长度更接近移动热源的瞬态熔池长度时,所预测的变形数值更准确。固定热源长度的缩短,引起描述热源作用所需时间的延长和接头“几何端部效应”加剧,焊缝处纵向残余应力的预测精度降低,对横向残余应力的影响较小。  相似文献   

18.
基于高频感应加热原理,建立了船体曲面高频感应弯板成型的圆形高斯加热热源模型。通过不同加热速度下参考点温度的模拟计算值和试验测量值的对比,验证了该热源模型的可靠性。研究了板材热物理性能参数中导热系数及线膨胀系数对船体曲面弯板成型的影响。这些结果表明,横向收缩变形主要取决于导热系数在高温区的取值,横向角变形则取决导热系数在低温区的取值;随着低温区材料线膨胀系数的增大,横向收缩和横向角变形也逐渐增大。  相似文献   

19.
张雪彪  贾洞洞 《船舶》2023,(3):70-75
鞍形板是典型的船体双曲度板之一,在使用高频感应加热成形鞍形板的研究过程中,多加热线的感应加热变形预测是钢板感应加热工艺研究的关键技术问题。该文基于固有应变理论和弹性有限元分析方法,通过大量钢板多场耦合的数值计算建立了工艺参数和固有应变的关系数据,以实际的固有应变作为载荷输入参数,应用弹性有限元模型计算多加热线鞍形板的整体变形。鞍形板的弹性有限元分析结果得到的挠度值与实验值一致,计算时间短,计算误差符合工程精度要求。因此,分析结果表明鞍形板多加热线的弹性有限元分析模型可以应用于鞍形板的变形预测。  相似文献   

20.
针对辊弯板多加热线的三角感应加热变形计算难题,提出基于固有应变法的弹性有限元计算方法,根据钢板感应加热的实验,数值分析固有应变的分布规律,结果表明,辊弯板在进行多条加热线加热后,钢板挠度值的计算结果和实验结果一致,而且计算时间短。基于固有应变的弹性有限元分析能够克服钢板热弹塑性模型在进行多加热线模拟时的计算难题,可以应用于钢板多加热线感应加热过程的整体变形计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号