首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以LMA型踏面车轮和CHN60钢轨为对象,基于有限元软件ABAQUS,采用mixed LagrangianEulerian法,分析全滑动制动、全滑动牵引、蠕滑制动以及蠕滑牵引4种工况下的高速列车轮轨稳态滚动接触蠕滑特性。结果表明:全滑动制动工况下纵向蠕滑力的合力为蠕滑制动工况下的6.5倍左右,全滑动牵引工况下纵向蠕滑力的合力为蠕滑牵引工况下的1.7倍左右;接触斑内的蠕滑力矢量在全滑动工况下均指向同一方向,制动时与运动方向相反,牵引时与运动方向相同,而在蠕滑工况下其存在自旋效应;全滑动工况下的纵向蠕滑率均大于蠕滑工况下的,而蠕滑工况下的横向蠕滑率均远大于全滑动工况下的;纵向蠕滑率在全滑动工况下的分布只有1个峰值区域,而在蠕滑工况下则存在2个峰值区,前一工况下的横向蠕滑率分布区域较散,数值相当小,最大仅为0.064%,而后一工况下的分布则相对集中,其最大值可达0.287%。  相似文献   

2.
建立车辆-轨道系统耦合动力学模型,结合Kalker三维非赫兹弹性体滚动接触理论及其数值程序CONTACT,分析轮轨间摩擦因数对地铁小半径曲线轮轨接触应力及轮轨滚动接触伤损的影响。结果表明:车辆通过圆曲线段时不同摩擦因数下整个接触斑均为滑动区;摩擦因数改变对轮轨接触斑内正应力影响很小,但对切向力和Mises应力影响显著;随着摩擦因数增大,纵向及横向蠕滑力显著增加,磨耗指数及表面疲劳指数明显增大。可通过定期对钢轨打磨并对车轮进行镟修,有效降低轮轨接触应力,以减缓轮轨磨耗和轮轨滚动接触疲劳的发生。  相似文献   

3.
基于Kalker三维滚动接触精确解方法,针对由高速铁路轨面不平顺引起的周期性激励问题,以单一方向简谐波动蠕滑率激励下蠕滑力特征研究为基础,考虑了随时间变化的轮轨接触弹性位移梯度效应以及更加复杂的轮轨蠕滑工况,拟合相应的非稳态传递函数,研究了不同方向蠕滑率同时存在的非稳态滚动接触问题。结果表明:使用非稳态滚动接触模型计算所得蠕滑力相对蠕滑率存在相位滞后,蠕滑率简谐波动波长比越小,蠕滑力幅值增益减小程度越大,相位滞后越多;使用非稳态传递函数方法与Kalker三维滚动接触精确解方法计算时,蠕滑力幅值和相位均具有较好的一致性;在简谐波动纵向蠕滑率激励时,横向蠕滑率的增大会减小纵向蠕滑力的幅值增益,但对纵向蠕滑力的相位滞后影响不大;在简谐波动横向蠕滑率激励时规律基本一致。  相似文献   

4.
针对柔性轨道下因谐波磨耗车轮激励而引发钢轨和轮对振动时的轮轨蠕滑问题,在分析柔性轨道下轮轨间滚动接触振动对轮轨蠕滑特性影响机理的基础上,基于CRTS型双块式无砟轨道和CRH2型高速列车,采用ANSYS和UM软件建立柔性轨道下高速列车的动力学数值模型;选取6种典型谐波磨耗(阶数分别为1,6和11阶;对应波深分别为0.1和0.3mm)车轮,进行轮轨滚动接触振动特性、轮轨蠕滑力和蠕滑率的分析。结果表明:车轮谐波磨耗阶数和波深的增加均导致钢轨垂向加速度、轮对垂向加速度、轮轨垂向力及轮轨蠕滑力和蠕滑率的大幅增加,且与阶数的影响相比,波深对滚动接触蠕滑特性的影响更大;当车轮的谐波磨耗取11阶和0.3mm波深时,轮轨垂向力最大值、钢轨垂向加速度最大值、轮对垂向加速度最大值和平均值、纵向蠕滑率平均值、纵向蠕滑力绝对平均值、横向蠕滑力最大值、纵向蠕滑力最大值分别约为车轮无谐波磨耗时的7.27,49.6,20.35,15.18,7.8,9.064,6.7和8.57倍;考虑柔性轨道后,轮轨接触脱离时间明显增加,轮轨蠕滑率和蠕滑力也有明显增大。  相似文献   

5.
针对不同车辆的车轮直径差异问题,研究了车轮直径对轮轨接触几何关系、轮轨接触斑、轮轨最大接触应力、蠕滑率、车辆稳定性以及轮轨磨耗等的影响。通过计算可以得出:随着车轮直径增加,左右车轮滚动圆半径差逐渐增大,等效锥度随着车轮横移量逐渐增大;接触斑面积逐渐变大,轮轨接触最大应力显著下降;轮轨的横向和纵向蠕滑率逐渐减少;车辆的稳定性变好,车辆过曲线时的磨耗变大。  相似文献   

6.
根据全尺寸高速轮轨关系试验台,建立基于ALE方法的轮轨滚动接触三维有限元模型,仿真分析干燥条件下高速轮轨黏着特性曲线,并采用试验台的高速黏着试验结果对其进行验证。在此基础上,分析高速条件下从制动到牵引工况变化过程中的轮轨接触斑状态、摩擦力分布、Mises应力分布等的演变规律。结果表明:有限元模型可用于模拟干燥轮轨接触表面条件下的高速轮轨黏着特性;黏着轮从自由滚动状态(全黏着)到最大牵引力(全滑动)过程中,轮轨接触斑从靠近轮缘的一侧进入滑动状态并逐渐扩大到整个区域,而制动工况时则从远离轮缘的一侧进入滑动状态;摩擦力从黏着轮自由滚动时的自旋分布状态逐渐变化为趋于一致方向,纵向蠕滑力达到饱和;Mises最大应力点由黏着轮自由滚动时的接触表面以下2 mm处逐渐转移到接触表面,应力更加集中。  相似文献   

7.
为分析机车牵引力对轮轨关系的影响,在SIMPACK多体动力学软件中分别建立了基于60钢轨和60N钢轨的"机车-轨道"耦合动力学模型,设定了水平轨道和坡道通过曲线的2种工况,分析机车牵引力与轮轨蠕滑关系、最大法向接触应力和RCF损伤系数的关联度。计算结果表明:增加牵引力使轮轨纵向蠕滑率和纵向蠕滑力迅速增加,横向蠕滑力降低,机车在60N钢轨上运行时变化尤为明显;钢轨内侧纵向蠕滑力受牵引力作用方向改变,引起钢轨内侧裂纹方向改变;相比60钢轨,60N钢轨抵抗磨耗的能力较强,但容易产生滚动接触疲劳。  相似文献   

8.
为了解机车在牵引工况下轮轨的蠕滑特征,本文采用线性蠕滑理论和非线性修正方法,推导出轮轨接触的蠕滑力公式,结合磨耗型踏面的轮轨接触几何特征,采用Simpack多体动力学软件建立DF8B型三轴转向架机车动力学模型,进行动力学仿真验证。研究发现:传统转向架机车在牵引工况通过曲线时,导向轮对外侧车轮轮缘根部接触钢轨,总的蠕滑力处于饱和状态;当轮轨接触总的蠕滑力饱和时,牵引力会引起轮轨接触界面的纵向和横向蠕滑力重新分配,牵引力越大,纵向蠕滑力越大,横向蠕滑力越小。惰行工况下导向力矩最大,随着牵引力的增加,导向轮对的导向力矩逐渐减小。  相似文献   

9.
任利惠  谢纲 《铁道学报》2012,34(5):32-40
轮轨非稳态滚动接触是指接触斑内的质点在滚动接触过程中,接触斑的外形和其他参数产生快速变化的过程,这时运动波长L与接触斑纵轴半径a处于同一数量级。本文使用Kalker三维滚动接触理论计算轮轨蠕滑率、法向力、钢轨轨面接触几何简谐激励时的非稳态蠕滑力,并与由稳态滚动接触理论计算的结果进行比较。其结果表明:在小蠕滑状态下,非稳态滚动接触的蠕滑力随L/a(简称波长比)的增长而产生明显的幅值衰减和相位滞后。在蠕滑率和钢轨轨面接触几何简谐激励时,非稳态蠕滑力的变化规律可用波长比L/a的传递函数描述,而法向力情况却不能。对于短波波磨等非稳态滚动接触行为,应使用非稳态滚动接触理论进行分析。  相似文献   

10.
以LM型踏面车轮和60kg·m-1钢轨为例,采用双线性塑性模型和平面应变热力耦合单元实现轮轨的热弹塑性耦合,传热过程中考虑轮轨接触斑处的非稳态热传导以及轮轨与周围环境间的热对流和热辐射,建立轮轨滑动接触二维热弹塑性有限元模型,分析轮轨接触斑间全滑动时不同相对滑动速度下,与温度变化相关的变摩擦系数对轮轨接触表面温度和等效应力的影响,并与取0.334的常摩擦系数时进行对比。结果表明:钢轨在轮轨接触斑附近的摩擦温升主要分布在其接触表面大约1.8mm的深度范围内,而车轮的主要分布在其接触表面大约2.5mm的深度范围内,采用变摩擦系数得到的轮轨摩擦温升要比采用常摩擦系数时低57%左右;轮轨接触斑附近钢轨和车轮的最大等效应力出现在车轮和钢轨的次表面上,采用变摩擦系数时得到的车轮和钢轨等效应力的影响范围比采用常摩擦系数时略小;轮轨间相对滑动速度对车轮接触表面的温度和等效应力影响不明显,但对钢轨接触表面温度和等效应力的影响明显,相对滑动速度越大,钢轨接触表面的温度也越高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号