首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了解机车在牵引工况下轮轨的蠕滑特征,本文采用线性蠕滑理论和非线性修正方法,推导出轮轨接触的蠕滑力公式,结合磨耗型踏面的轮轨接触几何特征,采用Simpack多体动力学软件建立DF8B型三轴转向架机车动力学模型,进行动力学仿真验证。研究发现:传统转向架机车在牵引工况通过曲线时,导向轮对外侧车轮轮缘根部接触钢轨,总的蠕滑力处于饱和状态;当轮轨接触总的蠕滑力饱和时,牵引力会引起轮轨接触界面的纵向和横向蠕滑力重新分配,牵引力越大,纵向蠕滑力越大,横向蠕滑力越小。惰行工况下导向力矩最大,随着牵引力的增加,导向轮对的导向力矩逐渐减小。  相似文献   

2.
机车牵引状态下曲线通过导向特性研究   总被引:1,自引:0,他引:1  
考虑车轮与钢轨的运动特性及轮周牵引力,推导出机车在牵引状态下通过曲线时的轮轨蠕滑率计算公式,并对曲线通过时的轮轨横向动态相互作用特性进行仿真计算与分析;同时研究牵引力大小对转向架导向性能的影响,对比分析了机车牵引与惰行状态下的导向性能。理论仿真分析结果表明:牵引力可以改变轮轨纵向蠕滑力的大小和方向,与惰行工况相比,牵引状态下的轮对导向力矩有所减小,轮对的自导向能力减弱,不利于曲线通过;提高牵引力,总轮轨蠕滑率将很快达到饱和状态,牵引力越大,轮轨纵向蠕滑力越大,两侧纵向蠕滑力差值越小,机车轮对自导向能力越差,轮对冲角增大,而轮轨横向蠕滑力越小;当牵引力增加到一定程度时,总轮轨蠕滑率超过极限状态,曲线通过时两侧轮径差太小而出现打滑和空转的现象。  相似文献   

3.
独立旋转车轮转向架曲线通过性能研究   总被引:9,自引:1,他引:8  
独立旋转车轮能够消除轮轨间的纵向蠕滑,理论上不存在蛇行运动,故在直线上可以获得较高的临界,基曲线上可使因纵向蠕滑而产生的轮轨噪音消失。与传统轮对相比,独立旋转车轮缺乏由纵向蠕滑力而产生的导向力矩,故在曲线上无自导向功能,基本上只能靠轮缘导向。曲线通过性能是车辆动力学研究领域中的重要课题之一。车辆由直线进入曲线,特别是通过缓和曲线时,由于受到线路的各种激扰,轮轨间将产生复杂的作用力,对车辆的曲线通过性能产生极大的影响。本文建立独立旋转车轮转向架车辆的动力学计算模型,模拟实际线路,利用数值模拟方法对车辆通过曲线的全过程进行动态仿真计算,得出独立旋转车轮转向架和传统轮对转向架曲线通过的动力学响应值。通过对两种转向架曲线通过时的轮轨横向力,脱轨稳定性及轮轨磨耗等动力学性能进行分析比较,提出了独立旋转车轮转向架曲线通过时所存在的问题。  相似文献   

4.
高速铁道车辆蛇行脱轨安全性评判方法研究   总被引:1,自引:0,他引:1  
通过建立轮轨三维几何接触模型、整车动力学分析模型和轮轨碰撞模型,分析高速铁道车辆蛇行失稳后的蛇行脱轨过程及其影响因素.高速铁道车辆的蛇行脱轨过程是一个爬轨和跳轨并存的复杂过程,轮对的名义冲角和有效冲角分别对准静态的爬轨和动态的跳轨起着重要影响作用;随着轮对横移速度的增大、轮轨摩擦系数以及车轮垂向载荷的减小,车轮的跳轨高度越大;横向蠕滑力在整个蠕滑力中所占比例以及轮对横向运动能量越大,车辆越容易脱轨.因此高速铁道车辆的蛇行脱轨安全性应根据轮对横移速度限值并考虑车辆的横向运行稳定性进行评判.当高速铁道车辆分别表现为“超临界”和“亚临界”的蛇行失稳极限环分岔形式时,可分别采用转向架横向加速度移动均方根值方法和转向架横向加速度限值对其横向运行稳定性进行评判.  相似文献   

5.
根据转向架结构理论分析和动力学仿真计算,对3D轴焊接构架式转向架通过曲线时重车轮轨横向力偏大的原因进行分析。认为3D轴焊接构架式转向架的主、副摩擦面摩擦系数偏大,使重车通过曲线时斜楔处于卡死状态,轮对轴箱纵向呈刚性定位,从而导致重车过曲线时轮轨横向力偏大。提出只要将斜楔副摩擦面的摩擦系数减小至0.1左右,则在轮轨纵向蠕滑力的作用下,轴箱斜楔纵向就不会被卡死,而且轮对纵向定位刚度只由轴箱弹簧提供,可以有效地降低重车过曲线时的轮轨横向力。线路动力学试验证明理论分析和仿真计算的结果是正确的。  相似文献   

6.
高速车辆横向稳定性的非线性影响因素研究   总被引:3,自引:0,他引:3  
为了研究高速转向架非线性因素对横向稳定性的影响和评价4种车轮踏面的动力学性能,根据CRH5型动车组转向架的构造特点,建立了高速转向架非线性模型.与ALSTOM公司所采用的模型相比,高速转向架非线性模型充分考虑了一系定位机构所形成的轮对纵向非线性约束刚度,因而两者的临界速度分析结果基本一致,但轮轨力计算存在差距.相对而言,高速转向架非线性模型更好地体现了轮轴横向力与纵向蠕滑力间的相互制衡关系,有利于非线性稳态曲线通过性能分析.动态仿真数据分析表明:LMA型车轮踏面可以满足300 km/h ~350 km/h高速轮轨技术要求,而XP55型踏面则可以满足250 km/h ~ 300 km/h速度的要求;LM型踏面的主要问题是等效锥度比较大,从而造成轮轨横向力也比较大,S1002型踏面对轮轨存在比较严重的有害磨耗问题.  相似文献   

7.
为分析机车牵引力对轮轨关系的影响,在SIMPACK多体动力学软件中分别建立了基于60钢轨和60N钢轨的"机车-轨道"耦合动力学模型,设定了水平轨道和坡道通过曲线的2种工况,分析机车牵引力与轮轨蠕滑关系、最大法向接触应力和RCF损伤系数的关联度。计算结果表明:增加牵引力使轮轨纵向蠕滑率和纵向蠕滑力迅速增加,横向蠕滑力降低,机车在60N钢轨上运行时变化尤为明显;钢轨内侧纵向蠕滑力受牵引力作用方向改变,引起钢轨内侧裂纹方向改变;相比60钢轨,60N钢轨抵抗磨耗的能力较强,但容易产生滚动接触疲劳。  相似文献   

8.
针对柔性轨道下因谐波磨耗车轮激励而引发钢轨和轮对振动时的轮轨蠕滑问题,在分析柔性轨道下轮轨间滚动接触振动对轮轨蠕滑特性影响机理的基础上,基于CRTS型双块式无砟轨道和CRH2型高速列车,采用ANSYS和UM软件建立柔性轨道下高速列车的动力学数值模型;选取6种典型谐波磨耗(阶数分别为1,6和11阶;对应波深分别为0.1和0.3mm)车轮,进行轮轨滚动接触振动特性、轮轨蠕滑力和蠕滑率的分析。结果表明:车轮谐波磨耗阶数和波深的增加均导致钢轨垂向加速度、轮对垂向加速度、轮轨垂向力及轮轨蠕滑力和蠕滑率的大幅增加,且与阶数的影响相比,波深对滚动接触蠕滑特性的影响更大;当车轮的谐波磨耗取11阶和0.3mm波深时,轮轨垂向力最大值、钢轨垂向加速度最大值、轮对垂向加速度最大值和平均值、纵向蠕滑率平均值、纵向蠕滑力绝对平均值、横向蠕滑力最大值、纵向蠕滑力最大值分别约为车轮无谐波磨耗时的7.27,49.6,20.35,15.18,7.8,9.064,6.7和8.57倍;考虑柔性轨道后,轮轨接触脱离时间明显增加,轮轨蠕滑率和蠕滑力也有明显增大。  相似文献   

9.
分析悬挂式单轨车辆的转向架结构及组成,建立相应的SIMPACK动力学仿真模型,总结悬挂式单轨车辆通过曲线时的受力分布和力矩平衡公式。应用控制变量法分别研究曲线通过速度、导向轮轮轨间隙和导向轮径向刚度对车辆曲线通过性能的影响。仿真结果表明,导向轮径向载荷随曲线通过速度和导向轮轮轨间隙的增大而增大,随导向轮径向刚度的增大而减小。其中,导向轮轮轨间隙对构架的横向加速度影响较大,对车体横向加速度影响较小。  相似文献   

10.
以CRH2型高速列车头车为研究对象,在轮轨滚动振动接触简化模型的基础上,采用多体动力学软件UM建立高速列车多体动力学数值模型,求解轮轨振动行为下的接触参数并作为有限元分析的输入;采用有限元方法建立高速轮轨滚动接触瞬态有限元模型,对轮轨振动行为下的高速轮轨滚动接触瞬态特性进行分析。结果表明:轮轨的垂向振动明显,轮轨垂向力呈周期性变化,且周期约为0.1s,振动频率约为10 Hz,轮轨垂向力最大为115 751.8N、最小为688.4N,分别为轮轨静载荷的1.938倍和0.012倍;轮对横移的振动频率约为1.05Hz,振幅为5.26mm;轮对横移量在0.5s时最大,为0.2s时的7.17倍,但纵、横向蠕滑力在0.2s时的大于0.5s时的;不同时刻轮轨间纵、横向蠕滑力的均值分别为13 542.11和1 239.07N;在一定范围内,纵、横向蠕滑力与轮轨垂向力、轮对冲角以及接触斑面积呈正相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号