首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
房卓  张宁川  臧志鹏 《船舶力学》2012,16(6):632-645
采用源函数造波法建立了三维数值波浪水槽模型,模拟了不同随机种子数(NW)下的随机波浪,与目标谱对比的结果证明当NW=200时,采用文中的数值方法可以得到较好的模拟精度;建立了随机波浪对一种非透浪梳式防波堤作用的数值模型,通过数值模拟结果和实验结果的比较,验证了该数值模型的有效性。对该非透浪的梳式防波堤的水力学特性进行了实验研究,并应用上述数值方法对结构的所受冲击波浪力机理进行了分析,数值结果证明在该结构的危险水位下,由结构的翼板和胸墙下底板所构成的异型空腔结构是导致翼板上产生较大冲击压力的主要因素。在此基础上,为了消减翼板的冲击压力,提出一种改进的结构型式,最后对该改进结构的翼板上波浪力特性和波浪反射系数进行了实验研究。  相似文献   

2.
在解决三维相邻多浮体的水动力问题时,正确处理各浮体之间的相互作用是分析计算的关键所在。文章分别运用高阶边界元法和波浪交互理论对一个由箱型浮体组成的三维多浮体问题进行求解,通过对比分析浮体所受波浪力和水下表面压力分布结果,验证两种方法计算结果的精确度,研究该模型的水动力特点;并通过改变各浮体之间的距离,寻求波浪交互理论在求解三维多浮体问题中的适用性,对该方法在浮体间距不满足限制条件时的计算结果进行解释。  相似文献   

3.
陈志明  伍斯杰 《船舶工程》2020,42(S1):61-66
本文基于计算流体力学(CFD)方法,对多重参考系模型(MRF)及滑移网格模型(SM)在计算螺旋桨水动力性能时的差异进行了探讨。将以上两种模型应用到4381螺旋桨的水动力性能计算中,首先将计算得到的推力系数及转矩系数与试验数据进行了对比,考察了两种计算模型对螺旋桨的敞水性能的预测情况,并进一步对两种模型计算得到的螺旋桨盘面的速度场、桨叶的压力分布、桨后涡量云图等进行了对比分析。计算结果表明,滑移网格模型相较于多重参考系模型,对螺旋桨的推力系数的模拟结果误差更小,扭矩系数方面,两种模型的模拟结果相差不大;对于进速系数较大时,两种模型模拟得到的压力分布及速度分布较为相似,但对于高负荷情况,滑移网格模型可以更好地捕捉桨叶的压力分布及桨盘面处的速度分布情况;进速系数较小时,多重参考系模型可以模拟出涡结构的发散现象,而滑移网格模型可以更好的在高进速系数情况下捕捉到梢涡结构。  相似文献   

4.
本文采用VOF和动网格方法、考虑限制水域边界条件的约束因素,利用CFD商业软件FLUENT通过求解脉冲砰击压力作用下具有自由表面限制水域上的Navier-Stokes方程来分析与观察一定倾角的矩形结构从一定高度自由落下砰击限制水域的水面所引起的三维流体动力现象,并与无倾角的矩形结构撞击有限水深水域的水面所引起的三维水面波动和水下压力场变化问题做对比分析。数值模拟结果表明采用本文所提出的数值方法可以对大型结构作用于封闭或开放水域的水面所激发起的水面波动和水下压力场变化进行有效的数值模拟。这一数值方法为工程上分析大型结构砰击限制水域水面所产生的水动力现象提供了一种实用的手段。  相似文献   

5.
To achieve rational design in waves for a submerged floating tunnel which has emerged as a new offshore transportation infrastructure, it's necessary to understand its hydrodynamic behavior. For simple but accurate estimation of hydrodynamic forces, a theoretical method is proposed and the tests with physical models in a wave flume were carried out for verification. Morison's equation was used to estimate wave loads composed of inertia force and drag force. Forces calculated by applying the linear wave theory to Morison's equation coincided well with those measured by the tests. The test results showed that mooring systems played a significant role in the movement of the submerged floating tunnel in waves. A pendulum model could be used to describe the motion of the submerged floating tunnel with a single vertical mooring. Based on the verified relations, a simple slack condition which causes the submerged floating tunnel to be unstable was also proposed. The simplified approach proposed by this study proved to be useful in designing the submerged floating tunnel in the initial stage.  相似文献   

6.
The cross-section geometry of a submerged floating tunnel (SFT) has a large effect on hydrodynamic characteristics, structural behavior and service level, making the tunnel cross section the primary factor in optimizing efficiency. Minimizing the mean drag and the dynamic variability in the lift of the SFT cross section under bi-directional (i.e., tidal) flow has a dramatic impact on the reduction of structural displacements and mooring loads. Based on a parametric Bézier curve dynamically comprising the leading-edge radius, tunnel height and width to define the SFT geometry, a sensitivity analysis of the Bézier curve parameters for a fixed aspect ratio with prototype dimensions under uniform flow conditions was conducted by applying Computational Fluid Dynamics (CFD), and the pressure distribution around the SFT cross-section surface was analyzed. A theoretical method comprising the Kármán vortex street parameters was employed to verify the CFD simulation results. In order to determine the SFT cross section with optimal hydrodynamic properties, the mean drag and Root Mean Square (RMS) lift coefficients were selected as optimization objectives, and four Bézier curve parameters were the input variables, in a neural network and genetic algorithm optimization process (a hybrid BP-GA structure), which is less likely to become trapped in local minima. The results show the optimal tunnel cross section has a mean drag and a RMS lift coefficient reduced by 0.9% and 6.3%, respectively, compared to the original CFD dataset.  相似文献   

7.
本文采用基于设计波法的直接计算法对270 000m3的浮式液化天然气船FLNG进行整船结构强度评估.根据FLNG具体的结构形式和数值分析的最终目的将该装置的实际结构简化,选用适当类型的单元对该装置的结构进行离散而得到FLNG的整船有限元模型.基于三维势流理论并利用中国南海波浪散布图对FLNG进行水动力分析,得到了FLNG在典型装载工况下的波浪压力分布及设计波参数.通过把FLNG承受的波浪压力、惯性力、静水压力与重力等载荷分布到有限元模型上,得到FLNG在典型装载工况下全船的应力水平、应力分布和变形情况.该数值分析结果可在FLNG的初级设计阶段为船体结构强度分析提供有效分析依据,并为FLNG上部模块的设计开发提供船体变形参考.  相似文献   

8.
船舶水压场信号总是淹没在大量的海浪杂波中,为了有效地从背景干扰中检测船舶水压场信号,文章籍海浪水压场近似服从正态分布的特性,在对接收到的海浪水压场信号进行AR建模的基础上,提取模型的自回归系数作为特征向量,采用BP神经网络进行信号检测。通过仿真数据对该检测方法进行验证,结果表明该方法简单而且易于实现,在低信噪比条件下,也能够达到较高的检测率。  相似文献   

9.
 Seaquakes, which are characterized by the propagation of vertical earthquake motion at the sea bottom as a compression (longitudinal) wave, are reported to cause damage to ships, and their effect on floating structures is a matter of great concern. To comprehend the basic properties of seaquakes, we first discuss a method to calculate the displacement of the seabed when it is subjected to hydrodynamic pressure. To investigate the interrelationship between the vibration of a floating structure and the deformation of the seabed, a new boundary integral equation is derived which assumes that the seabed is a semiinfinite homogeneous elastic solid in order to analyze the seaquake-induced hydrodynamic pressure acting on the floating structure. By considering the propagation of the seismic wave in the ground and in the water, the incident wave potential in seaquake problems is also deduced and its characteristics are discussed. Finally, the response of a very large floating structure in a seaquake is investigated using a fluid force analysis method, and considering the interrelationship between the vibration of the floating structure and the deformation of the seabed. Received: August 19, 2002 / Accepted: November 11, 2002 Address correspondence to: H. Takamura (hiroaki_takamura@nishimatsu.co.jp) Updated from the Japanese original, which won the 2002 SNAJ prize (J Soc Nav Archit Jpn 2001;189:87–92,93–100 and 190:381–386)  相似文献   

10.
安康  李良碧  姚智  霍发力 《船舶工程》2020,42(9):133-141
半潜式平台在拖行过程撑杆等细长结构承受的波浪砰击对结构安全影响较大,相关船级社规范中明确要求结构分析过程中需要考虑波浪砰击载荷。基于传统势流理论的数值方法已经被广泛的应用于浮式海洋平台的水动力和砰击载荷的研究,但是对于复杂的粘性干涉效应、波浪爬升、波浪破碎和波浪砰击等实际工程问题不能够运用势流理论准确模拟。非定常的计算流体力学CFD (Computational Fluid Dynamics)方法能够较为准确解决上述问题。因此,本文以982半潜式海洋平台为研究对象,采用计算流体力学中的动态重叠网格方法和流域体积域方法VOF(volume of fluid),结合水池物理模型试验结果,对平台在拖行工况下撑杆的波浪砰击进行研究。主要对半潜平台撑杆在三种不同流速和风速的拖航工况下撑杆受到的砰击压力的敏感性进行了分析研究,分析波浪砰击下撑杆的瞬态砰击压强分布情况,得到波浪砰击压力危险区域,同时给出拖航工况下撑杆砰击压力系数的变化规律,为分析预报半潜式平台撑杆在复杂的拖航海况下受到的砰击压力提供了参考。  相似文献   

11.
This paper is concerned with the hydroelastic problem of a pontoon-type, very large floating structure (VLFS) edged with the perforated plates, non-perforated plates or their combination anti-motion device both numerically and experimentally. A direct time domain modal expansion method, taking amount of the time domain Kelvin sources in hydrodynamic forces, in which the fluid flows across the perforated anti-motion plate by applying the Darcy's law, is applied to the fluid–structure interaction problem. A quarter of numerical model is built based on the symmetry of flow field and structure in hydrodynamic forces, and special care is paid to the rapid and accurate evaluation of time domain free-surface Green functions and its spatial derivatives in finite water depth by using interpolation–tabulation method. Using the developed numerical tools and the model tests conducted in a wave basin, the response-reduction efficiency of the perforated plates is systematically assessed for various wave and anti-motion plate parameters, such as plate width, porosity and submergence depth. As a result of the parametric study, the porosity 0.11 is selected as the optimal porosity, and the relationship between the porosity and the porous parameter is developed by using the least-squares fitting scheme. After simulation and verification, the dual anti-motion plates which are the perforated-impermeable-plate combination attached to the fore-end and back-end of the VLFS, are designed for more wave energy dissipation and added damping. Considering variation of the water depths in offshore, discussion on the effectiveness of these anti-motion devices at different water depths is highlighted.  相似文献   

12.
采用SESAM软件包对一种三浮桶式海上风电基础结构进行了运动响应计算。采用GeniE模块建立了该三浮桶海上风电基础结构的结构模型和水动力模型,并在HydroD模块中进行了组合载荷以及运动响应的计算,对其水动力特性进行了分析。在其中的波浪载荷计算过程中,采用基于三维水动力理论的设计波方法。  相似文献   

13.
A wave load computation approach in direct strength analysis of semi-submersible platform structures was presented in this paper. Considering the differences in shape of pontoon, column and beam, the combination of accumulative chord length cubic parameter spline theory and analytic method was adopted for generating the wet surface mesh of platform. The hydrodynamic coefficients of platform were calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for platform with low forward speed. The equation of platform motions was established and solved in frequency domain, and the responses of wave-induced loads on the platform can be obtained. With the interpolation method being utilized, the pressure loads on shell elements for finite element analysis(FEA) were converted from those on the hydrodynamic computation mesh, which pave the basis for FEA with commercial software. A computer program based on this method has been developed ,and a calculation example of semi-submersible platform was illustrated. Analysis results show that this method is a satisfying approach of wave loads computation for this kind of platform.  相似文献   

14.
针对一种新型的深水立柱式Spar钻采储运平台(Spar Drilling Production Storage Offloading)的结构特点进行极限强度可靠性研究。SDPSO平台的中间舱段为储油系统,其结构的安全性尤为重要,本文验证了在波浪弯矩年极值条件下其特殊储油系统结构的安全性。采用SESAM/Wadam软件对SDPSO平台进行水动力计算,利用序列统计法得到年极值短期海况,然后采用极值I型分布得到该短期海况下的波浪弯矩极值;利用ABAQUS非线性有限元软件和改进的Rosenblueth法进行SDPSO平台中舱段的极限强度计算,并得到极限承载能力的概率分布。最后基于一次二阶矩法完成SDPSO平台弯曲极限强度的可靠性计算,结果表明平台结构极限强度具有较高的安全水平,为深海立柱式海洋平台设计提供了依据和参考。  相似文献   

15.
防波堤的波浪力计算对防波堤的设计和稳定具有重要意义。针对目前圆筒防波堤波吸力的设计计算方法尚未成熟,通过开展物理模型试验,进行不规则波作用下不同间距下大直径圆筒结构波吸力的分布规律、影响因素和计算方法研究。结果表明:波谷作用下,大直径圆筒结构波吸力的横向分布规律与圆筒的间距有关,纵向分布规律表现为随着水深增加先线性增大然后线性减小,且最大波吸力的位置出现在静水位一倍波高以下。圆筒的相对间距、相对水深以及波陡对不同间距大直径圆筒防波堤的波吸力影响较大。基于直立墙结构波吸力公式给出折减系数的拟合公式,用以计算圆筒周身迎浪面的波吸力。  相似文献   

16.
陈智杰  王永学 《中国造船》2007,48(B11):421-431
基于线性波理论,应用三维分布源法求解边界积分方程,计算了波浪作用下双驳船施工沉放的沉管隧道管段沉放过程中的波浪荷载及频域运动响应。计算中忽略了驳船本身的运动对沉管运动响应以及缆绳受力的影响,缆绳作用力由静力学方法计算。计算结果表明,沉管受到的波浪荷载在靠近水面的位置较大,并随着沉管沉放深度的增加而减小;随着波浪周期的增大,沉管受到的波浪荷载先增大而后减小;沉管的运动响应一般在离水面近的位置较大,并随着沉放深度的增加而减小。  相似文献   

17.
Nowadays, an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea. As a result, some phenomena related to the violent fluid-elastic structure interactions(e.g., hydrodynamic slamming on marine vessels, tsunami impact on onshore structures, and sloshing in liquid containers) have aroused huge challenges to ocean engineering fields. In this paper, the moving particle semi-implicit(MPS) method and finite element method(FEM) coupled method is proposed for use in numerical investigations of the interaction between a regular wave and a horizontal suspended structure. The fluid domain calculated by the MPS method is dispersed into fluid particles, and the structure domain solved by the FEM method is dispersed into beam elements. The generation of the 2D regular wave is firstly conducted, and convergence verification is performed to determine appropriate particle spacing for the simulation. Next, the regular wave interacting with a rigid structure is initially performed and verified through the comparison with the laboratory experiments. By verification, the MPS-FEM coupled method can be applied to fluid-structure interaction(FSI) problems with waves. On this basis, taking the flexibility of structure into consideration, the elastic dynamic response of the structure subjected to the wave slamming is investigated, including the evolutions of the free surface, the variation of the wave impact pressures, the velocity distribution,and the structural deformation response. By comparison with the rigid case, the effects of the structural flexibility on wave-elastic structure interaction can be obtained.  相似文献   

18.
Sound pressure distribution around a monotone sound source was measured inside a marine propeller cavitation tunnel and compared with the calculated result by a two-dimensional boundary element method. The measured sound pressure distribution showed some peaks due to the reflection effect of the tunnel test section boundary. As the frequency increased, the sound pressure distribution became more complicated, showing more peaks. The tunnel reverberant effect should be taken into account when the noise data measured in the tunnel are converted into full-scale values. In the boundary element method calculation, the boundary condition at the acrylic observation window of the tunnel was examined in detail. The calculated sound pressure distribution pattern in the tunnel transverse section agreed well with the measured distribution when a reasonable boundary condition was adopted. The boundary element method is an effective method for theoretically predicting the acoustic field inside the cavitation tunnel if the precise boundary condition is adopted.  相似文献   

19.
Environmental effects have an important influence on Offshore Wind Turbine (OWT) power generation efficiency and the structural stability of such turbines. In this study, we use an in-house Boundary Element (BEM)—panMARE code—to simulate the unsteady flow behavior of a full OWT with various combinations of aerodynamic and hydrodynamic loads in the time domain. This code is implemented to simulate potential flows for different applications and is based on a three-dimensional first-order panel method. Three different OWT configurations consisting of a generic 5 MW NREL rotor with three different types of foundations (Monopile, Tripod, and Jacket) are investigated. These three configurations are analyzed using the RANSE solver which is carried out using ANSYS CFX for validating the corresponding results. The simulations are performed under the same environmental atmospheric wind shear and rotor angular velocity, and the wave properties are wave height of 4 m and wave period of 7.16 s. In the present work, wave environmental effects were investigated firstly for the two solvers, and good agreement is achieved. Moreover, pressure distribution in each OWT case is presented, including detailed information about local flow fields. The time history of the forces at inflow direction and its moments around the mudline at each OWT part are presented in a dimensionless form with respect to the mean value of the last three loads and the moment amplitudes obtained from the BEM code, where the contribution of rotor force is lower in the tripod case and higher in the jacket case and the calculated hydrodynamic load that effect on jacket foundation type is lower than other two cases.  相似文献   

20.
This paper presents a fluid-structure-material coupling analysis for the interaction between water waves and a very large floating laminated structure (VLFLS), which is consisted of two enhanced ultrahigh-performance concrete (UHPC) panels and a middle lightweight foamed rubber core. The representative volume element (RVE) method is used to design the mechanical properties of enhanced UHPC and foamed rubber, and the parameterized formulas are presented to reveal the dependency between macroscale mechanical properties and mesoscale hierarchical characteristics. By idealizing the rubber core as a uniformly distributed spring layer, an eighth-order differential equation of motion of the laminated structure is derived. In the context of linear potential flow theory, a hydroelastic analytical model is developed for the floating laminated structure with finite length under wave action. In the process of solving velocity potentials, a complicated dispersion equation for the wave motion below the laminated structure is derived, and this equation contains two pairs of conjugate complex roots with positive real parts. The various hydrodynamic quantities, including reflection coefficient, transmission coefficient, deflection, shear force, and bending moment, are calculated. The hydroelastic model is confirmed by considering the convergence of calculation results and the energy conservation of wave propagation. The coupled effects of wave action, material characteristics, structural parameters, and edge conditions on the hydroelastic and mechanical response of the floating laminated structure are clarified to provide important information regarding the optimal design of such structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号