首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Rogue buckles may occur for unburied subsea pipelines operating under high temperature and high pressure conditions. Distributed buoyancy section (DBS) is often installed to trigger pipeline lateral buckling. Single distributed buoyancy section (SDBS) is normally adopted to trigger a symmetric lateral buckling mode. But in some cases, dual distributed buoyancy sections (DDBS) with a gap between them are utilised to trigger an antisymmetric lateral buckling mode. This paper concerns the behaviour of antisymmetric lateral buckling triggered by DDBS. First, the locations of the maxima of the deflection and bending stress are determined. Then, comparisons of the post-buckling behaviour between antisymmetric buckling mode, triggered by DDBS, and symmetric buckling mode, triggered by SDBS, are presented and discussed. The influences of the spacing between dual buoyancy sections and the parameters of the DBS on the buckled configuration and post-buckling behaviour are presented. Finally, the effects of the DBS on the minimum critical temperature difference, the maxima of the deflection and stress are discussed. The results show that the maxima of the deflection and stress of the antisymmetric mode are much smaller than that of the symmetric mode under the same operating conditions. During the design process, the spacing between dual buoyancy sections, the length and the weight ratio coefficient of the DBS should be determined in sequence.  相似文献   

2.
Controlled lateral buckling is triggered by distributed buoyancy section at predesigned sites to release the axial force induced by high temperature and high pressure in subsea pipelines. Due to the larger diameter and smaller submerged weight of distributed buoyancy section, compared to the normal pipe section, imperfections are more easily introduced at the location of distributed buoyancy section. In this study, an analytical model is proposed to simulate lateral buckling triggered by a distributed buoyancy section for an imperfect subsea pipeline, which is validated by test data. Semi-analytical solutions are derived. First, snap-through buckling behaviour is discussed. Then the influence of initial imperfections on buckled configurations, post-buckling behaviour, displacement amplitude and maximum stress is discussed in detail. The results show that there is no snap-through phenomenon for large amplitude of initial imperfections, which appears only when the amplitude of imperfection is small enough. The displacement amplitude increases with the amplitude of initial imperfections, and it first increases and then decreases with wavelength of initial imperfection. Compared to a perfect pipeline, the maximum stress amplifies for relative small wavelength of initial imperfections. Therefore, a large enough wavelength of initial imperfection should be introduced.  相似文献   

3.
Subsea pipelines exposed to high temperature and high pressure (HTHP) conditions is susceptible to lateral buckling. In order to control lateral buckling, engineered buckle initiators, such as sleepers, are introduced to initiate planned lateral buckles along the pipeline at specific locations in order to ensure that the stress in each lateral buckle remains acceptable. In this study, taking the interaction of adjacent buckles into account, analytical solutions of antisymmetric lateral buckling mode triggered by sleepers are derived. With the proposed formulations, the method to obtain the accurate locations of lateral displacement amplitude and maxima of bending stress is presented and discussed. And a detailed comparison between symmetric and antisymmetric mode of lateral buckling triggered by single sleeper is presented. Moreover, the influence of the sleeper spacing on controlled lateral buckling behaviour with the consideration of axial interaction between adjacent buckles is conducted. Finally, a detailed analysis about the influence of the sleeper height, lateral frictional coefficient and submerged weight of the pipeline on the controlled post-buckling behaviour is presented. Our results show that, for smaller sleeper friction or smaller sleeper height, the symmetric mode is more likely to happen, while the antisymmetric mode is prone to occur for larger sleeper friction and larger sleeper height. One effective method to reduce displacement amplitude and maximum stress is to decrease the sleeper spacing. The minimum critical temperature difference decreases with increasing sleeper height and increases with increasing lateral friction coefficient or submerged weight of the pipeline. And an alternative way to reduce the maximum stress is to reduce the lateral friction coefficient or submerged weight of the pipeline even though the displacement amplitude increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号