共查询到6条相似文献,搜索用时 0 毫秒
1.
Unburied subsea pipelines under high-temperature conditions tend to relieve their axial compressive stress by forming localised lateral buckles. This phenomenon is traditionally studied under the assumption of a specific lateral deflection profile (mode) consisting of a fixed number of lobes. We study lateral thermal buckling as a genuinely localised buckling phenomenon by applying homoclinic (‘flat’) boundary conditions. By not having to assume a particular buckling mode we are in a position to study transitions between these traditional modes in typical loading sequences. For the lateral resistance we take a realistic nonlinear pipe-soil interaction model for partially embedded pipelines. We find that for soils with appreciable breakout resistance, i.e., nonmonotonicity of the lateral resistance characteristic, sudden jumps between modes may occur. We consider both symmetric and antisymmetric solutions. The latter turn out to require much higher temperature differences between pipe and environment for the jumps to be induced. We carry out a parameter study on the effect of various pipe-soil interaction parameters on this mode jumping. Away from the jumps post-buckling solutions are reasonably well described by the traditional modes whose analytical expressions may be used during preliminary design. 相似文献
2.
3.
4.
卷管法是海底管道铺设中的一种重要方法,由于其铺设过程涉及很多装备,因而管道的受力过程复杂。管道的上卷过程会使管道发生塑性变形并引起残余曲率,上卷过程造成的变形需要在退卷过程中进行校直,这个过程中的缠绕和校直引起的塑性变形,对管线造成的损伤不可忽视。首先介绍卷管式铺管法的铺设原理,然后利用有限元分析软件ABAQUS模拟管道上卷和退卷的动态过程,最后研究卷管铺设上卷和退卷过程中管道的轴向应变历史和应力应变关系以及管道弯曲曲率、截面椭圆率变化历史。结果表明,管道在经过卷筒、校准器、校直器时产生很大的弯曲曲率和截面椭圆率。 相似文献
5.
在较高温度和压力作用下,由于土壤的摩擦阻力,海管会产生很大的轴向压力,以及由侧向屈曲引发的弯矩。因此对含腐蚀缺陷管道安全工作压力的评价,须考虑轴向压应力的影响。对目前工程界的评价方法进行对比分析,在内压和轴向压应力组合作用下,含腐蚀缺陷海管的安全压力评价方法还很不完善,尤其是复杂缺陷,目前的规范还不完全适用。通过对许用应力法安全系数的讨论和分析,基于Von Mises准则和有限元分析,提出了组合应力作用下含腐蚀缺陷海管的安全工作压力评价方法。通过该方法对某运行了近三十年的管道进行了安全工作压力的评估,同时考察了轴向压应力对安全工作压力的影响。此方法对应的轴向压应力限值和安全等级以及安全系数相关,当安全等级低时,其值和DNV-RP-F101规范值基本一致,当安全等级高时,其值比DNV-RP-F101规范值大。 相似文献
6.
The accurate assessment of the remaining strength of corroded pipes is a subject that has been increasingly investigated over the past decades. This is because of the risk of significant social, economic, and environmental effects that may be caused by an accident. The finite element method has been successfully used to predict the collapse pressure considering external load. It was also used in this study. The literature primarily focused on the corroded pipes subjected to internal pressure. In this study, the out-of-roundness (ovalization) of the pipe was considered to evaluate the collapse pressure. Uncertainties should be incorporated into a computational model to assess the reliability of corroded pipes. Three methods for evaluation of the probability of failure were used: the first-order reliability method (FORM), traditional Monte Carlo (MC), and a new proposed methodology that combines MC results with the kernel density estimation method (MCkde). The probability of failure of ovalized corroded pipes subject to external pressure was computed. The results exhibited a good agreement between FORM and MCkde method. The statistical importance of each random variable was observed and the results were compared with those from intact ovalized pipes. The computation cost of the MC method with numerical simulation limits its use to the application under study. Solutions using the FORM and MCkde methods exhibited good agreement with those of the full MC method. However, the computational effort of the latter was independent of the stochastic dimension, and it was a derivative-free method. As expected, in general, the solutions based on empirical methods were conservative. 相似文献