共查询到20条相似文献,搜索用时 0 毫秒
1.
The shielding effect of the downstream cylinder in flow induced oscillation (FIO) of two cylinders arranged in tandem is studied experimentally and numerically at Reynolds number 30,000 to 120,000. Both cylinders are in one degree-of-freedom, transverse-oscillations, and have turbulence stimulation in the form of selective surface roughness to expand FIO beyond vortex-induced vibration (VIV) into galloping. Shielding of the downstream cylinder has a negative effect on harnessing hydrokinetic energy. To study its effect and mechanics, selective cases are studied both numerically and experimentally and discussed to demonstrate the shielding effect on the downstream cylinder and understand its cause. The main conclusions are: (1) The shielding effect for the downstream cylinder shows a strong relation to the damping ratio. As the damping ratio increases, the shielding effect is mitigated. Additionally, the oscillation of the rear cylinder becomes stable and shows stable frequency. (2) In the VIV region, as the stiffness and natural frequency increase, the shielding effect decreases substantially. (3) In the VIV region, the vorticity of the vortices shedding from both the upper and the lower sides of the downstream cylinder does not accumulate enough due to the attraction by the vortices shed from the upstream cylinder, thus resulting in partial suppression of the oscillation on the downstream cylinder. (4) In the galloping region, the shielding effect for the downstream cylinder depends on whether the vorticity near the downstream cylinder is strengthened by the vortices generated by the shear layers of the upstream cylinder or weakened. 相似文献
2.
岛礁波浪环境下浮式结构物的动响应预报 总被引:1,自引:0,他引:1
中国南海海洋岛礁往往都环绕着宽度数百到数千米、水深很浅的珊瑚礁盘,这些礁盘不仅具有丰富的渔业和旅游资源,而且发挥着消波、护岛的重要作用。为开发海洋资源,可以在岛礁附近布设各种浮体结构物,作为海洋开发、渔业生产、环境旅游等综合保障基地。对于岛礁附近的浮式结构物,其动响应特征必将受到周围复杂的近岛礁海洋环境的影响。文章采用缓坡方程考虑近岛礁波浪环境影响,以半潜式平台为研究对象,开创性地提出了一种工程简化计算方法,用于预报岛礁附近浮式结构物在波浪中的运动与载荷响应,为后续岛礁中型浮体的设计和安全性评估提供了分析手段。 相似文献
3.
This study performed experimental investigation on the dynamic response of an in-place floating offshore wind turbine (FOWT) under freak wave actions. Based on the method of wave profile modulation, various freak wave profiles embedded in unidirectional Gaussian seas were generated in wave basin and the action of these waves on the FOWT was measured and analyzed, which has not been done before. The motions of FOWT were analyzed in time domain as well as time-frequency domain. The effect of freak wave parameters on FOWT motions was addressed, i.e., freak wave height, freak wave period, large crest, and deep trough. The dynamic response of FOWT was observed as a spike at the occurrence of freak wave in a conventional random wave, where the impact of freak wave can last for 17 spectral peak periods of wave. Data analysis shows that the motions of FOWT increased linearly with the freak wave height. In addition, the occurrence of freak wave induced the coupled effect on surge and pith, which was strengthen with the increase of freak wave height and wave period. Compared to a large crest, a deep trough of freak wave led to stronger motions and was supposed to be a key concern on the safety of the FOWT. The novel findings in this study provided a reference for the design of survival load on a FOWT and benchmarks for validating numerical models. 相似文献
4.
In this paper, we present a numerical study on the hydroelastic response of a 4.6 km long fjord crossing floating bridge subjected to wave loads. The bridge is straight in design and supported by 35 pontoons along its full length. To limit the response to horizontal loads, four clusters of deep water mooring lines are engaged to increase the transverse stiffness of the bridge. Owing to the very large span across the fjord, inhomogeneity in the wave field exists. This study examines the various effects of inhomogeneous wave loads on the dynamic responses of the floating bridge. These include the spatial variations of the wave direction, significant wave height and peak period as well as the coherence and correlation of waves along the entire length of the floating bridge. For the purpose of comparison, the dynamic bridge responses under homogeneous wave load cases are also studied. In addition, the effects of wave load components and short-crestedness are presented and discussed. 相似文献
5.
以200 m作业水深的5 MW OC3单柱式浮式风力机为研究对象,采用FAST程序对其在不同海况下的运动进行全耦合时历数值计算,并与采用1∶50缩尺比模型试验所得时历结果进行对比,通过时域以及频域方法对平台主要自由度运动以及系泊拉力进行分析。研究发现:垂向运动带来的自由面记忆效应较纵向和横向小;悬链线式模型所能提供的系泊拉力较张紧式系泊提供的拉力小;风浪联合作用下,风载荷主要激励低频固有频率运动,波浪载荷则主要激励波频运动;平台纵荡和纵摇运动受系泊系统的影响较大,而垂荡运动则不受系泊系统的影响。 相似文献
6.
以某半潜式钻井平台月池结构为研究对象,基于一般耦合法建立拉格朗日与欧拉网格的耦合,计及应变率效应的影响,应用二阶精度求解器ROE算法结合等效当量TNT方法及理想气体状态方程,参考API规范要求设置多组计算工况,对月池结构在不同爆源高度及不同当量载荷下的动态响应进行了数值分析研究。研究发现:整体结构抗爆性能较好,未有结构发生破损失效。当爆源高度超过41.55m或当载荷增大时,对X方向月池内壁板格造成的冲击与变形损伤更大,该处结构在防爆设计时应重点考虑;平台沿Y方向的舱壁为主要吸能构件,占比最低为44.7%,当爆源高度降低时,吸能占比增加,当爆炸载荷增大时,吸能占比降低;沿X方向的舱壁吸能占比稳定约为24%。本文的研究对于评估平台结构抗爆性能,优化结构设计等方面具有一定的参考价值。 相似文献
7.
8.
Hydrodynamic load and motion response are the first considerations in the structural design of a submerged floating tunnel (SFT). Currently, most of the relevant studies have been based on a two-dimensional model test with a fixed or fully free boundary condition, which inhibits a deep investigation of the hydrodynamic characteristics with an elastic constraint. As a result, a series of difficulties exist in the structural design and analysis of an SFT. In this study, an SFT model with a one-degree-of-freedom vertical elastically truncated boundary condition was established to investigate the motion response and hydrodynamic characteristics of the tube under the wave action. The effect of several typical hydrodynamic parameters, such as the buoyancy-weight ratio, γ, the relative frequency, f/fN, the Keulegan–Carpenter (KC) number, the reduced velocity, Ur, the Reynolds number, Re, and the generalized Ursells number, on the motion characteristics of the tube, were selectively analyzed, and the reverse feedback mechanism from the tube's motion response to the hydrodynamic loads was confirmed. Finally, the critical hydrodynamic parameters corresponding to the maximum motion response at different values of γ were obtained, and a formula for calculating the hydrodynamic load parameters of the SFT in the motion state was established. The main conclusions of this study are as follows: (i) Under the wave action, the motion of the SFT shows an apparent nonlinearity, which is mainly caused by the intensive interaction between the tube and its surrounding water particles, as well as the nonlinearity of the wave. (ii) The relative displacement of the tube first increases and then decreases with increasing values of f/fN, Ur, KC number, Re, and the generalized Ursells number. (iii) γ is inversely proportional to the maximum relative displacement of the tube and the wave force on the tube in its motion direction. (iv) Under the motion boundary condition (as opposed to the fixed boundary condition), the peak frequency of the wave force on the SFT in its motion direction decreases and approaches the natural vibration frequency of the tube, whereas the wave force perpendicular to the motion direction increases. When the incident wave frequency is close to the natural vibration frequency of the tube, the tube resonates easily, leading to an increased wave force in the motion direction. (v) If the velocity in the Morison equation is substituted by the water particle velocity measured when the tube is at its equilibrium position, the inertia coefficient in the motion direction of the tube is linearly related to its displacement, whereas that in the direction perpendicular to the motion direction is logarithmically related to its displacement. 相似文献
9.
Experiments involving a sonar platform with a sound absorption wedge were carried out for the purpose of obtaining the low frequency acoustic characteristics. Acoustic characteristics of a sonar platform model with a sound absorption wedge were measured, and the effects of different wedge laid areas on platform acoustic characteristic were tested. Vibration acceleration and self-noise caused by model vibration were measured in four conditions: 0%, 36%, 60%, and 100% of wedge laid area when the sonar platform was under a single frequency excitation force. An experiment was performed to validate a corresponding numerical calculation. The numerical vibration characteristics of platform area were calculated by the finite element method, and self-noise caused by the vibration in it was predicted by an experiential formula. The conclusions prove that the numerical calculation method can partially replace the experimental process for obtaining vibration and sound characteristics. 相似文献
10.
Experimental and numerical study on tuned liquid dampers for controlling earthquake response of jacket offshore platform 总被引:1,自引:0,他引:1
Earthquake loading has to be considered when the offshore platform is constructed in active fault zone. Tuned liquid dampers (TLD) have been proposed to control the dynamic response of structures. Liquid sloshing experiments on cylinder tank show the sloshing happens more seriously when the frequency of external excitation is close to the fundamental sloshing frequency of liquid. Lumped mass method is employed to numerically analyze the controlling earthquake effect on TLD. Based on TLDs the feasibility to control earthquake response of jacket platform is studied and applied to CB32A oil tank platform. Using extra TLDs in CB32A to control the seismic response of the platform is researched by the model test and numerical simulation. Lumped mass method can simulate the behavior of TLD during earthquake very well and gives close numerical results compared with those from model experiments. It has been found that the ratio of the fundamental sloshing frequency of liquid to the natural frequency of platform is the key factor to control earthquake response. The larger ratio of water-mass to platform-mass is also useful to reduce vibration as well. 相似文献
11.
12.
间隙对拼组式浮桥静态响应的影响分析 总被引:7,自引:0,他引:7
为了减小浮桥在通载状态下的结构内力及浮桥拼组拆卸的方便,拼组式浮桥通常在设计的时候就在舟节之间留有一定的连接间隙.在以往的分析中大多忽略了这种间隙对浮桥变形和受力的影响,而简单地将浮桥简化为连续或者铰接梁体系进行数值或者解析求解,这种方法并不能准确地给出桥节之间连接间隙的存在及其大小对浮桥静态响应的影响.本文以拼组式浮桥的连接间隙为研究对象,建立全桥分析的三维有限元模型,并用非线性单元的组合对浮桥连接件的力学特性进行有限元模拟,通过计算与试验结果的比较,表明了本文方法的正确性;在此基础上本文研究了浮桥在静载荷作用下的位移响应及不同位置的连接件内力与连接件间隙之间的关系,为此类浮桥的设计提供了必要的参考,并为其后续的动力分析提供了必要的理论依据. 相似文献
13.
This study investigates the freak wave impinging on a tension-leg platform through wave flume experiments. The freak waves are generated using the focused wave theory. By adjusting the wave focusing location, different incident wave scenarios at the structure location are produced. Simultaneous measurements of wave shape evolutions upon impingement, wave impact pressures on the platform deck, platform motions and tether forces are carried out for synchronized analyses of the wave kinematics/dynamics and structural responses. The variation of these parameters with the incident wave profile is studied. It is found that although applying less intensive local impact pressures as compared to the highly-breaking freak wave, the slightly-breaking or non-breaking freak wave imposes the same level of adverse effect on the platform's global stability in terms of motions and tether forces. In addition, the high-crest freak wave causes violent motions of the floating platform, which are likely to induce snap loads of large amplitude and high occurrence frequency in tethers. The published results would provide useful benchmarks for validating numerical and analytical models. 相似文献
14.
15.
Previously reported container losses were generally attributed to extremely violent motions of containerships due to adverse weather conditions. However, most existing specifications or standards adopted for containers and lashing equipment meet the requirement of static conditions. Hence, further researches on safer container shipping under heavy sea states are required. Consequently, an experimental study method is proposed to measure the dynamic response of 1/10 scaled lashing bridge and container stack. The scaled model of the lashing bridge is constructed based on the similarity theory. Based on two dimensionless numbers, Froude's number and Cauchy's number, eleven container scaled models are employed. A series of experiments with controlled parameters are performed using a three-degrees shaking table (roll, pitch, heave) to present sufficient data to verify the effectiveness of the numerical model. The results of experiments, numerical simulations and calculations of the VERISTAR procedure (developed according to the BV rule) are compared. This study aimed to explore the mechanical behavior of the lashing bridge and container stack under predetermined driving excitations (roll and pitch) which simulated heavy sea states. According to the results, the model can predict conditions similar to real situations of the lashing bridge and container stacks while storages on the weather deck. 相似文献
16.
17.
In this paper we present a full-scale experimental field study of the effects of floater motion on a main bearing in a 6 MW turbine on a spar-type floating substructure. Floating wind turbines are necessary to access the full offshore wind power potential, but the characteristics of their operation leave a gap with respect to the rapidly developing empirical knowledge on operation of bottom-fixed turbines. Larger wind turbines are one of the most important contributions to reducing cost of energy, but challenge established drivetrain layouts, component size envelopes and analysis methods. We have used fibre optic strain sensor arrays to measure circumferential strain in the stationary ring in a main bearing. Strain data have been analysed in the time domain and the frequency domain and compared with data on environmental loads, floating turbine motion and turbine operation. The results show that the contribution to fluctuating strain from in-plane bending strain is two orders of magnitude larger than that from membrane strain. The fluctuating in-plane bending strain is the result of cyclic differences between blade bending moments, both in and out of the rotor plane, and is driven by wind loads and turbine rotation. The fluctuating membrane strain appears to be the result of both axial load from thrust, because of the bearing and roller geometry, and radial loads on the rotating bearing ring from total out-of-plane bending moments in the three blades. The membrane strain shows a contribution from slow-varying wind forces and floating turbine pitch motion. However, as the total fluctuating strain is dominated by the intrinsic effects of blade bending moments in these turbines, the relative effect of floater motion is very small. Mostly relevant for the intrinsic membrane strain, sum and difference frequencies appear in the measured responses as the result of nonlinear system behaviour. This is an important result with respect to turbine modelling and simulation, where global structural analyses and local drivetrain analyses are frequently decoupled. 相似文献
18.
系泊船舶运动响应周期试验研究 总被引:1,自引:0,他引:1
针对国内外系泊船舶物理模型试验中所给系泊船舶运动响应周期特征参数的不同,对横向波浪作用下一艘26.6×104 m3系泊LNG船舶的运动响应周期特性进行物理模型试验研究。结果表明,半载状态下,纵移运动存在着32 s的自振周期;横移运动为周期性间歇增长运动,横移运动周期与系泊船舶固有横摇周期的比值在1.11~1.23,大体上随波浪周期增大成倍数增长;横摇运动峰值随波浪周期增大而增大,横摇运动周期与系泊船舶固有横摇周期的比值在1.23~1.48,大体上随波浪周期增大成倍数增长;不同装载状态下回转运动均存在着较长的自振周期:半载状态为30 s,满载状态为32 s。 相似文献
19.
ZHUANG Yuan LIU Zu-yuan 《船舶与海洋工程学报》2007,6(1):53-57
At present, the method of calculating the turbulent flow width around the bridge pier is not given in the "Standard for Inland River Navigation" (GB50139-2004) in China, and the bridge designer usually increases the bridge span in order to ensure the navigation safety, which increases both of the structural design difficulty and the project investments. Therefore, it is extremely essential to give a research on the turbulent flow width around the bridge pier. Through the experiments of the fixed bed and the mobile bed, the factors influencing the turbulent flow width around the bridge pier have been analyzed, such as the approaching flow speed, the water depth, the angles between the bridge pier and the flow direction, the sizes of bridge pier, the shapes of the bridge pier, and the scouring around the bridge pier, etc. Through applying the dimension analytic method to the measured data, the formula of calculating the turbulent flow width around the bridge pier is then inferred. 相似文献
20.
An innovative offshore system integrating a floating offshore wind turbine with a steel fish farming cage (FOWT-SFFC) has recently been developed by the two leading authors for offshore wind and aquaculture industry. The purpose of this paper is to investigate the dynamic responses of FOWT-SFFC subjected to simultaneous wind and wave actions in the harsh South China Sea environment by a series of model tests. The tests are conducted at the Tsinghua Ocean Engineering Basin with Froude scale of 1:30. In this paper, the similarity law and setup of model tests are given first. Then a series of calibration tests and identification tests are carried out to validate the capacity of wind generator and wave maker, and to identify the vibration frequencies of tower, the stiffness of mooring system, natural periods and system damping, motion response amplitude operators (RAOs) of FOWT-SFFC, and thrust-speed performance of the turbine in wave basin. After that, seakeeping tests are implemented for random waves, followed by a sequence of load cases including normal operating and extreme conditions. Constant wind speeds and random wind speeds are respectively considered in load combinations. The experimental results affirm the excellent seakeeping and dynamic performance of FOWT-SFFC. Existence of metal fish nets increases the damping of foundation's 6 degree-of-freedoms motions. Generally, the influence of nets on the dynamic responses is insignificant in wind sea states. 相似文献