首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
阐述了对我国首列200 km/h动力集中型电动旅客列车组动力车表面压力分布测试情况,并对测量结果进行了较为详细的分析,最后用面元法的计算结果与测量结果进行了对比,在流动非分离区,两者有较好的一致性.  相似文献   

2.
介绍了造成200km/h动力集中型电动旅客列车组的控制车和动力车表面压力分布不同的主要原因,对控制车表面压力分布测量结果进行了分析,并用面元法的计算结果与测量结果进行了对比,与流动非分离区,二者有较好的一致性。  相似文献   

3.
介绍了造成200 km/h动力集中型电动旅客列车组的控制车和动力车表面压力分布不同的主要原因,对控制车表面压力分布测量结果进行了分析,并用面元法的计算结果与测量结果进行了对比,在流动非分离区,二者有较好的一致性.  相似文献   

4.
实车表面空气压力分布试验技术研究   总被引:10,自引:0,他引:10  
梁习锋 《铁道学报》2002,24(3):95-98
列车表面压力分布实车试验受多种因素影响和制约,该文在多次大型实车空气动力学试验研究的基础上,对表面压力分布实车测量中出现的许多典型问题进行了分析。探讨,并提出了相应的解决措施,形成了从测点布置,表面压力采样,采样管铺设到数据采集和数据处理一套完整的列车表面压力分布实车测量方法。  相似文献   

5.
高速列车表面压力分布的数值计算   总被引:6,自引:0,他引:6  
梁习锋  曾剑明 《铁道车辆》1997,35(5):10-12,50
用三维面元法对三种不同机车头型形状的高速列车表面压力分布进行了数值计算,并与风洞试验进行了对比,计算结果与试验结果一致。  相似文献   

6.
近年来,在多条高速线路上对各型高速列车进行了一系列隧道通过和隧道交会试验。现通过对这些空气动力学实车试验数据进行详细分析,获得了高速列车通过隧道和在隧道内交会过程中的压力波特性,以及压力波随列车长度、运行速度和隧道长度等影响因素变化的规律。  相似文献   

7.
准高速列车表面压力分布测量实车试验研究   总被引:6,自引:1,他引:5  
介绍了一种采用拍式感压片而无需在列车表面开测压孔的新的实车表面压力测量方法,并对试验中比较压的选取进行了详细分析.2次实车试验得出的准高速列车表面压力分布规律一致,其结果对检验列车局部外形的合理性及空调设备进排风口位置的合理布置具有指导意义.  相似文献   

8.
“中华之星”号列车端部流线型长度达到5.5m,且采用双拱外形。司机室向车体顶部过渡曲面曲率较大,容易产生流动分离现象,为检验端部流线型外形设计的合理性,采用数值模拟计算和实车试验相结合的方法对其局部表面空气压力分布进行研究。研究结果表明:动力车司机室向车体顶部过渡曲面局部表面未发生流动分离。  相似文献   

9.
准高速列车表面压力颁测量实车试验研究   总被引:2,自引:0,他引:2  
张斌  梁习锋 《铁道车辆》2000,38(10):14-16
介绍了一种采用拍式感压片而无需在列车表面开测压孔的新的实车表面压力测量方法,并对试验中比较压的选取进行了详细分析。2次实车试验得出的准高速列车表面压力分布规律一致,其结果对检验列车局部外形的合理性及空调调和进排风口位置的合理布置具有指导意义。  相似文献   

10.
在概述了我国旅客动车组发展现况以及列车动力学性能的研究重点之后,较为详细地介绍了180km/h内燃动车组(2M9T)动力车动力学性能的线路运行试验,对动车组动力学性能的特点进行了论述。  相似文献   

11.
高速列车司机室空调进排风口空气压力试验研究   总被引:1,自引:1,他引:0  
为给高速列车司机室空调机组冷凝风机设计提供依据,文章对“中华之星”号高速列车动力车司机室空调机组进、排风口位置空气压力进行了实车测量,并对测试结果进行了分析。结果表明:随列车运行速度增加,进、排风口压差减小,且动力车作为尾车时进、排风口压差减小程度大于作为头车时的减小程度。  相似文献   

12.
明线运行时动车组空调装置表面压力分布数值分析   总被引:1,自引:0,他引:1  
车顶空调装置表面压力分布对于合理选择空调换气装置的进、排气口位置和布局具有重要的工程应用价值。利用三维定常不可压缩N-S方程、k-ε双两方程紊流模型,采用有限体积法对8节编组动车组在明线运行时,车顶空调装置表面压力分布进行数值模拟分析,得到车顶空调装置表面压力沿列车纵向长度和列车宽度方向的分布规律,并提出空调装置新风口和废排口建议设置位置和原则。  相似文献   

13.
为了将地铁瞬变压力的波动控制在人体舒适度范围内,根据三维不可压缩Navier-Stokes方程和标准k-ε紊流模型,以22.73 m2的地铁区间矩形隧道为研究对象,建立隧道-列车-空气数值模型,分析地铁隧道中列车特征部位压力和压力梯度的变化规律和影响因素。研究结果表明:列车运行速度超过100 km/h后,有必要在地铁入口处设置缓冲结构;缓冲结构降低压力最大值的效果并不显著,但降低压力梯度最大值的效果显著;喇叭型缓冲结构是优选的地铁入口降压措施;缓冲结构的最佳长度为2倍隧道水力直径;缓冲结构的横断面积越大,其降压效果越好;缓冲结构的最佳开孔率为30%左右。  相似文献   

14.
以CKD7F型机车车体静强度试验数据为基础,分析了关键部件的应力,指出车体轻型化设计中应当注重的地方,提出了结构件要尽量兼顾垂直载荷和纵向载荷的观点。  相似文献   

15.
CRH2型动车组列车交会空气压力波试验分析   总被引:3,自引:0,他引:3  
阐述胶济线CRH2型动车组列车交会空气压力波实车测试情况,对测试结果进行详细分析,并将实车试验结果与数值模拟计算结果进行比较.研究结果表明:250 km/ h等速交会情况下,实车试验测得的车体表面交会压力波最大幅值为1 195 Pa,在铁路线间距为4.4 m的条件下不会对列车运行安全产生影响;车厢内最大压力变化幅值为19 Pa,仅为车体表面压力变化幅值的1.6%,车厢内产生的压力变化幅值不会对乘客舒适性产生影响;在4.4 m线间距情况下,被测试的CHR2型动车组上的交会压力波幅值近似与同型号等速交会动车组运行速度的平方成正比;数值计算与实车试验得到的规律基本吻合,计算与试验结果相差5.15%,数值计算结果可信.  相似文献   

16.
通过对我国某型地铁列车进行隧道空气动力学实车线路试验,得到地铁列车实际运行过程中车内、外压力变化规律。试验结果表明:该型地铁列车车内压力变化满足我国地铁设计规范舒适度评价标准及美国地铁人体舒适度评价标准。地铁列车运行过程中,最长隧道区间的车内、外压力变化幅值明显大于其它隧道;列车以不同速度和模式运行中,车内1.0 s、1.7 s、3.0 s时的压力变化幅值和车外各测点压力变化幅值均不相同,车体表面测点压力变化由车头至车尾方向呈逐渐减小的趋势。  相似文献   

17.
准高速列车交会空气压力波试验研究   总被引:10,自引:1,他引:9  
根据在广深准高速线上首次成功地进行列车交会压力波试验所得结果,本文分析了列车交会压力波幅值大小与列车运行速度、交会列车相对速度、线间距、车体截面形状、车头形状的关系,以及高速车对低速车的影响。  相似文献   

18.
针对高速地铁列车通过隧道区间风井扩大段时引起的乘客耳感不适,依托某带隧道风井的地铁线路区间及设计时速120 km的8车编组地铁列车,以ATO运行模式开展实车试验;在确保试验可重复性的基础上,探究列车站间运行时各车厢内外压力变化规律,分析区间风井扩大段引起车内外压力突变的原因。结果表明:车头和车尾先后高速通过风井段时,相当于经历了隧道断面面积先扩大再缩小的变化过程,会形成类似于车头和车尾驶出和进入隧道洞口的物理现象,车头、车尾通过区间风井扩大段会导致车外压力的上升、下降,此时产生的压力突变是导致耳感不适的主要原因;尾车至头车的车外压力正峰值和负峰值全程呈上升趋势,头车和尾车压力变化峰峰值接近,分别为1 617和1 723 Pa,5车压力变化峰峰值最小,为964 Pa;列车通过区间风井扩大段时,车内压力变化幅值受运行速度的影响较大,速度为113 km·h-1时,任意3和1 s内的车内压力变化幅值均超过相应标准中的耳感舒适性要求。  相似文献   

19.
为研究快速地铁列车在隧道内运行时的“列车-隧道”耦合空气动力特性,在杭海城际铁路开展实车试验,分别对列车以100 km/h与120 km/h的速度通过隧道时的车内外压力变化情况进行研究,计算压力峰-峰值、3 s压力变化幅值与1.7 s压力变化幅值,对比列车进隧道与出隧道过程中车内外压力变化情况,分析不同车辆编组位置与不同列车运行速度对车内外压力变化的影响,研究空调机组状态与车内压力变化幅值之间的关系。研究结果表明,快速地铁列车进出隧道过程中压力变化幅值相近;列车进入隧道并在隧道内运行时,尾车车内压力变化速率最快,车外压力峰-峰值从头车向尾车逐渐减小,而车内压力峰-峰值沿车长方向基本不变;当列车速度不同时,车内外压力对比应在无量纲时间下进行,随着列车速度的增大,车内外压力峰-峰值增大,压力变化速率加快;关闭空调机组可以显著减小车内压力变化速率,可为乘客舒适性研究提供参考。  相似文献   

20.
采用实车试验方法对CRH2动车组通过隧道时新风换气装置影响车内压力波动的规律进行研究,研究结果表明:新风风机开启能够明显降低车内气压变化,列车通过二岩隧道时车内压力变化幅值关闭状态比开启状态大43%,车内3 s空气压力变化率关闭状态比开启状态大52%,车内1 s空气压力变化率关闭状态比开启状态大43%;风机处于开启状态...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号