首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
无线闭塞中心(RBC)是CTCS-3级列控系统的地面核心设备,通过地面设备和列控车载设备提供的信息,生成行车许可,可保障RBC管辖范围内的列车安全运行.本文通过3起特殊场景下列车制动停车故障,深入分析故障原因,并提出相应的解决措施.  相似文献   

2.
针对CTCS-3级列控车载设备CTCS-3及CTCS-2信息融合技术进行研究,提出CTCS-3和CTCS-2信息融合的4个应用场景,结合CTCS3-300T车载设备给出具体实施的技术方案,并进行总结。  相似文献   

3.
CTCS-3级列控车载设备高速适应性关键技术   总被引:1,自引:0,他引:1  
从CTCS-3级列控系统工程建设角度出发,对包括基于多路速度传感器数据融合的测速测距策略、列车制动模型及CTCS-3/CTCS-2级动态转换机制等CTCS-3级列控车载设备高速适应性关键技术进行研究。根据不同类型测速传感器的特点,采用车轮速度传感器与雷达相结合的方式实现列车速度的安全测量,并运用联合卡尔曼滤波理论提出基于多路传感器数据融合的测速测距算法策略。结合列车移动体的控制特点,在国际铁路联盟UIC 544—1标准的基础上,提出1种改进的分段式减速度计算的列车制动模型,可兼顾行车安全和效率。针对列车运营模式的兼容性与可靠性,采用兼容CTCS-3级和CTCS-2级的双模冗余设计,使CTCS-3级列控车载设备同时具有CTCS-3级控车功能和CTCS-2级控车功能,并通过输入信息共享和等级转换时信息交换等技术手段,实现CTCS-3/CTCS-2级之间的平滑动态转换。研究成果已在武广高速铁路上实施,满足了列车高速安全运行的要求,并提高了等级转换时的列车运行效率和旅客舒适度。  相似文献   

4.
轨道电路读取器(英文缩写为TCR),是用于京津客运专线300km/h动车组的信号子系统.它读取ZPW-2000A轨道电路信息码,向车载安全计算机提供正常或制动信息,是CTCS-2级系统车载设备的重要组成部分.CTCS-2系统列控车载设备根据TCR输出信息,并结合地面应答器信息控制列车安全运行.  相似文献   

5.
正科技运[2008]34号《CTCS-3级列控系统整体技术方案》对自动过分相的描述是:列控车载设备根据地面设备提供的分相区信息,在适当位置给动车组过分相装置发送指令,实现自动过分相。对于CTCS-3级列控系统,牵引供电分相区信息与列车行车许可一起由RBC提供给列车;对于CTCS-2级列控系统,牵引供电分相区信息由地面应答器提供给列车。分相区信息包括至分相区距离、分相区长度等。  相似文献   

6.
CTCS-3至CTCS-2级列控系统等级转换应答器布置非常重要。等级转换应答器布置不当,会引起列车紧急制动。通过对CTCS-3级列控系统应答器应用原则研究,介绍CTCS-3至CTCS-2等级转换应答器组布置原则,并详细分析特殊场景下引起列车紧急制动的原因。最后结合特殊场景,提出优化等级转换应答器布置的方法。  相似文献   

7.
列车运行控制系统(简称列控系统)是客运专线和高速铁路列车运行的关键技术设备.列控系统主要包含两个方面,一方面为地面控制技术,另一方面为车载控制技术,即通过地面提供信息,车载实现自动控制功能.京沪高铁采用CTCS-3级列控技术,其列控车载设备为CTCS-3级列控车载设备.CTCS-3级基于GSM-R无线传输信息,并采用轨道电路等方式检查列车占用的列车运行控制系统.列控车载设备与其配套的地面列控系统实时进行通信,完成地面与列车之间的信息交汇,从而保证高速运行列车安全平稳运行.  相似文献   

8.
列车运行控制系统(简称列控系统)是客运专线和高速铁路列车运行的关键技术设备。列控系统主要包含两个方面,一方面为地面控制技术,另一方面为车载控制技术,即通过地面提供信息,车载实现自动控制功能。京沪高铁采用CTCS-3级列控技术,其列控车载设备为CTCS-3级列控车载设备。CTCS-3级基于GSM-R无线传输信息,并采用轨道电路等方式检查列车占用的列车运行控制系统。列控车载设备与其配套的  相似文献   

9.
正CTCS-300T型列控车载设备能够监控列车运行,实现超速防护、人机界面等功能,是保证列车安全运营的关键设备。因此,保证列控车载设备的稳定运行,是保证动车组安全运行的关键要素,也是我们工作的重中之重。300T车载设备中继电器是车载设备和车辆的接口单元,用于列车超速时常用制动输出、紧急制动输出、切除牵引等等功能的实现,对于行车安全的保障至关重要。目前300T设备继电器故障发生比较多,运行途中若发生继电器  相似文献   

10.
上海动车段试验线列控车载设备测试系统   总被引:1,自引:0,他引:1  
主要介绍上海动车段试验线车载设备测试系统的功能、系统组成、控制原理及主要控制流程,举例介绍测试场景及测试方法,系统满足CTCS-2级列控系统车载设备动态测试功能需求,预留CTCS-3级列控系统车载设备动态测试条件。  相似文献   

11.
装备CTCS-3级列控车载设备的列车从CTCS-2级线路向CTCS-3级线路运行时需进行CTCS-2/3等级转换,在转换过程中车地建立无线通信连接时的列控数据交互,需经过物理层、链路层、传输层、安全层和应用层等,任何一步失败,都会导致列车无法转换到CTCS-3等级运行。从CTCS-2/3级等级转换失败案例中选取车载未发送SABME帧、车载发送多条SABME帧、RBC收到多条M155消息包等典型问题进行分析,分别从车载、网络和地面3个方面提出针对性的解决措施,可为类似问题的处理提供借鉴。  相似文献   

12.
装备CTCS-3级列控车载设备的动车组在运营中由ATP控制自动过分相。对装备300H型ATP的动车组在多种场景下发生的过分相问题进行分析;阐述了ATP车载设备在C2/C3等级下控制自动过分相的工作原理;从ATP逻辑处理角度,对可能出现的带电过分相及执行假分相的原因进行针对性研究;对后续如何避免该问题提出可行性解决方案。  相似文献   

13.
武广高铁是双线高速铁路,采用基于GSM-R无线通信平台的CTCS-3级列控系统,车载ATP与地面RBC之间通过GSM-R网络进行列控安全数据双向传输.车-地间数据信息传输可靠性直接关系到高速列车的行车安全和运输效率,车-地间通信中断或无法正确接收数据,列车控制系统会自动由CTCS-3级降为CTCS-2级,速度减至300km/h以下,会对全线列车正点率、运行调度、行车秩序造成极大影响.CTCS-3级降为CTCS-2级的原因多种多样,采取何种手段分析CTCS-3降级的异常现象,进而找到原因,减少甚至避免此类现象发生是铁路管理部门和维护部门的目标.  相似文献   

14.
梁冠 《铁路技术创新》2011,(Z1):126-127,129
1 CTCS-3级运行中与GSM-R的DSU模块相关的问题武广高速铁路运行的是我国自行生产、拥有完全自主知识产权的CRH2和CRH3型"和谐号"高速列车.在CTCS-3级列控系统控制下,列车能以350 km/h平稳运行,行车间隔可达3min.CTCS-3级列控系统通过信号无线闭塞中心(RBC)设备实现,而保证RBC设备向动车发送CTCS-3级控车交互信息的则是GSM-R系统.移动交换中心( MSC)作为GSM-R系统中电路域的核心,一方面通过有线方式连接RBC设备,采用PRI信令;另一方面连接无线子系统,从无线侧获取动车车载OBC设备消息,使RBC与OBC间实时信息交互,实现CTCS-3级控车.  相似文献   

15.
依据CTCS-3级列控系统技术规范,研究基于CRCCTst的CTCS-3级列控系统测试方法。以《CTCS-3级列控车载设备补充技术规范(暂行)》为例,选取部分功能需求为依据,以ATP车载设备为被测对象,编写符合规范场景的测试案例并运行测试序列,对被测设备进行测试,验证了基于CRCCTst的CTCS-3级列控系统测试方法的可用性。  相似文献   

16.
CTCS-3级列控系统通过GSM-R无线网络实现列车与地面无线闭塞中心(RBC)之间的双向信息传输,还具备CTCS-2级列车运行控制功能.CTCS-3级列控系统的GSM-R系统设计要求实现GSM-R车载网络接入终端设备,该设备应满足列车在350 ~ 400 km/h运行时速下,最高9600 bit/s的列车安全数据与地面RBC间的实时双向传输[1],同时要求数据传输链路实现无缝连接,数据传输安全、可靠、实时.  相似文献   

17.
CTCS-2级列控系统主要应用于双线铁路,在单线铁路中尚无工程应用先例,为解决单线铁路CTCS-2级列控系统应用存在的问题,在符合现行规范、不修改列控车载设备的前提下提出CTCS-2级列控系统总体方案。通过单线铁路与双线铁路的差异性对比分析,结合CTCS-2级列控系统功能需求,对闭塞方式、轨道电路配置、应答器设置、临时限速管理等特殊技术问题进行了研究并提出了解决方案。研究表明:CTCS-2级列控系统应用于时速200~250 km单线铁路能够实现列车高速安全运行。  相似文献   

18.
资讯报道     
《铁道通信信号》2021,(2):95-95
CTCS-3级列控车载设备无线下载及智能诊断系统(300T/300S)通过技术评审2020年12月17日,郑州局集团公司科委在郑州组织召开了"CTCS-3级列控车载设备无线下载及智能诊断系统(300T/300S)"科研成果技术评审会。  相似文献   

19.
张友兵  唐涛 《铁道学报》2012,34(7):49-55
在CTCS-3级列控系统中,车载设备在执行RBC切换过程中所用时间的长短和切换成功概率的大小,严重影响着列车的运行效率。本文利用有色Petri网对车载设备进行RBC切换的两种方式分别建模,模型中引入GSM-R故障模型和非周期消息模型,模拟在GSM-R网络中消息的传输过程和重发机制。研究结果表明:基于两部车载电台的RBC切换方式比基于一部车载电台的RBC切换方式所用时间更少,效率更高。列车速度、消息重发时间间隔都会影响列车执行RBC切换的时间。消息重发时间间隔和RBC重叠范围又会影响车载设备进行RBC切换的成功概率。  相似文献   

20.
为了增强CTCS-3级列车控制系统ATP车载设备的可靠性,在分析车载设备的外部接口与内部功能的基础上,结合时序状态机的相关理论分析,提出一种能够使得CTCS-3级列车控制系统ATP车载设备主备系无扰动切换的指导方法。针对该方法,结合相关功能点,进行分析,得出该方法的可行性,此研究成果对指导双系无扰动切换具有较大的实用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号