首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
以活塞环-缸套为研究对象,利用GT-Suite软件建立了活塞环-缸套摩擦模型,将摩擦、润滑和动力学三者耦合起来,同时考虑了活塞环和缸套的扭曲变形、接触表面粗糙度等因素,计算分析标定工况下活塞环-缸套的油膜厚度、油压分布、摩擦力和摩擦功耗。着重分析了不同润滑油温和不同转速条件下第一环油膜厚度和摩擦功耗,结果表明:第一道活塞环处润滑效果差、摩擦功耗高;随着油温升高,油膜厚度显著减少,同时摩擦功耗显著减少,综合考虑润滑和摩擦功耗,发现油温在80~90℃时摩擦特性较为理想;随着转速提高,油膜厚度增加,同时摩擦功耗增加,转速对油膜厚度影响较小,对摩擦功耗有显著影响。  相似文献   

2.
在活塞式发动机上,缸套温度对于摩擦和润滑油油膜厚度的影响最为强烈。随着缸套温度的升高,流体动力的摩擦力和因此而引起的摩擦损失减少。同时,活塞环上的润滑油油膜厚度减薄,上止点和下止点换向部位的混合摩擦力增大,磨损增大。 缸套温度不变的情况下,随着转速提高,流体动力的摩擦力和摩擦损失增加。油膜增厚,混合摩擦力减小,磨损也减较。 缸套温度相同的情况下,压力负荷增大,油膜厚度变薄,尤其是在膨胀冲程时,混合摩擦力增强,同时磨损也增加。 在几种试验用的第一道压缩环的轮廓线之中,对于摩擦、磨损和润滑油控制来说,有一种最佳的断面轮廓线。在目前工作情况下,这是与经过了大量研究且在长期运用实践中成熟了的环截面的试验结果相符的。 摩擦和油膜厚度、混合摩擦力和环与缸套磨损比率、以及油膜厚度和油耗之间的相互关系表明,利用此种类型的试验装置,能够准确地测得有关的物理关系并且可以应用在批量生产的发动机上。  相似文献   

3.
以弹流润滑理论为基础,发展了一种活塞环三维弹性流体动压润滑数值分析模型。为了研究气缸套径向变形对活塞环弹流润滑性能的影响,建立了椭圆形气缸套模型,分析了气缸套不同变形量时的油膜压力、油膜厚度和润滑表面弹性变形等性能参数。计算结果表明,气缸套径向发生变形时,油膜压力分布、最大油膜压力、油膜厚度分布、最小油膜厚度以及润滑表面弹性变形等都会发生明显变化。因此,分析活塞环弹流润滑性能时考虑气缸套径向变形的影响是非常必要的。此外,为了提高活塞环润滑性能应尽量减少气缸套和活塞环的径向变形量。  相似文献   

4.
综合考虑缸套热变形、缸套温度场、弹性变形以及润滑油变黏度等因素影响,建立活塞环-缸套摩擦副的瞬态流体动压润滑计算模型,分析发动机工况、活塞环-缸套接触面粗糙度方向和粗糙度大小对摩擦功耗和窜气量的影响。研究发现,当转速升高时,摩擦功耗升高,影响发动机效率;活塞环采用横向粗糙度方向和缸套采用纵向粗糙度方向的组合,能够同时使窜气量和摩擦功耗处于较低的水平;综合粗糙度一致时,采用活塞环表面粗糙度低于缸套表面粗糙度的组合,能有效降低摩擦功耗。  相似文献   

5.
<正> 现代民内燃机的动力储备在很大程度上由活塞环-缸套摩擦副的工作能力所决定,并且首先要由这个摩擦副保证有可靠的润滑条件所决定。应当指出,发动机活塞环-缸套上部润滑油工作条件非常苛刻:活塞环-缸套零件的高温使润滑油粘度急刷下降,接近上死点顶部空间的工作气体压力达到最大值,活塞环处的油膜液体动力压力趋近于零。这样,活塞环与缸套在此区间的接触条件接近于临界状态。此外,当活塞工作行程下行时,活塞的顶环在气缸表面上所形成的润滑油膜厚度,对评定润滑油工作热氧化条件,以及润滑油在发动机整个润  相似文献   

6.
采用直接耦合的有限元分析方法对一汽油机的活塞组一气缸套系统的瞬态传热过程进行了研究。通过将润滑油膜假设为一维热阻,建立了活塞组气缸套整体耦合系统的三维传热模型,应用所开发的三维流体动压润滑分析程序对活塞环组沿周向瞬时变化的油膜厚度进行了计算与分析。以LJ377MV汽油机活塞组一气缸套零部件为对象进行了应用研究,获得了更为清晰的多部件间的相互传热关系。  相似文献   

7.
为获得内燃机缸套—活塞环磨合过程中微凸体的承载情况,利用粗糙峰的接触模型推导出磨合状态下微凸体承载方程,对弹性变形微凸体承载和塑性变形微凸体承载分别进行了研究,并对Gaussian分布下的微凸体承载方程进行了理论分析,重点讨论了内燃机缸套—活塞环磨合过程中塑性变形微凸体承载能力的变化。分析结果表明,磨合初期,塑性接触部分微凸体承载较大(占微凸体总承载的70%~80%);随着磨合的进行,塑性接触部分微凸体承载占微凸体总承载的比例逐渐减小,是一个动态变化的过程。所建立的微凸体承载方程为磨合过程的动力学建模及缸套—活塞环摩擦学状态分析提供了理论支撑。  相似文献   

8.
表面织构活塞环与CuO纳米润滑油协同润滑特性数值研究   总被引:1,自引:0,他引:1  
建立了活塞环-缸套流体动压润滑数值模型,研究表面织构和CuO纳米润滑油对活塞环协同润滑机理。研究结果表明:CuO纳米润滑油能有效减小粗糙接触力,降低磨损,但会引起流体黏性剪切力增加;活塞环织构表面与缸套之间形成的微动压效应对动压润滑有促进作用,能有效减小流体摩擦力,减少摩擦损失,但在上下止点附近会导致粗糙接触力增加,磨损加剧;活塞环表面织构的位置会影响其摩擦性能,对比发现中间织构效果最好,与无织构活塞环相比能减小摩擦损失5.17%;表面织构和CuO纳米润滑油之间存在协同润滑作用,合适浓度的纳米润滑油和一定尺度的表面织构能在减少活塞环摩擦损失的同时降低磨损。本研究中中间织构活塞环和体积分数0.5%CuO纳米润滑油组成的协同润滑能达到最佳润滑性能。  相似文献   

9.
发动机活塞环-缸套低摩擦设计仿真分析   总被引:1,自引:0,他引:1  
以某直列3缸汽油机为研究对象,建立了仿真计算模型,验证了模型的正确性,利用该模型分析了活塞环结构对活塞环-缸套摩擦副润滑的影响。研究表明:过大或过小的活塞环径向桶面高度都会增加活塞环-缸套摩擦副的摩擦损失;在保证发动机平稳运行的基础上,应尽可能选择小的切向弹力;开口间隙对活塞环-缸套之间的窜气量影响很大,冷态时,该款发动机开口间隙为0.38~0.40mm时最佳。  相似文献   

10.
基于活塞二阶运动方程和裙部流体动压润滑模型,建立了活塞和缸套的结构动力学模型,以分析缸套弹性变形对活塞二阶运动和裙部润滑特性的影响。结果表明:不同曲轴转角下缸套的变形不同,做功行程中变形明显,而且最大变形量出现的区域随转角的变化而改变;考虑缸套弹性变形后,活塞二阶运动有所加剧,在压缩和做功行程中更加明显;在做功行程中裙部最小油膜厚度明显减小,而总摩擦功耗显著增加,在其它行程中两者均无显著改变;油膜压力场峰值变小,在进气和做功行程中减小明显,但压力场分布基本不变。  相似文献   

11.
发动机气缸套磨损谱编制方法研究   总被引:1,自引:0,他引:1  
通过对气缸套-活塞环进行润滑分析,得到了不同曲轴转角位置活塞环的微凸体载荷分布及磨损速率。结合动载荷特点对Archard磨损计算模型进行了修正,同时根据载荷分级对发动机工况进行了离散,计算得到了各离散网格单元内的磨损参数,基于发动机整机载荷谱,采用时间插值方法,编制了典型任务剖面下的气缸套磨损谱。  相似文献   

12.
活塞、活塞环的摩擦以及润滑油粘度对燃料经济性的影响   总被引:1,自引:0,他引:1  
论述了活塞、活塞环的摩擦以及润滑油粘度对燃料经济性的影响。研究表明,气缸套的润滑主要是流体动力润滑,在活塞运动到上止点时,活塞环和气缸套之间因局部接触而发生混合润滑。通过降低润滑油的粘度和添加减摩剂,可以改善润滑而提高燃料的经济性。  相似文献   

13.
汽油机活塞组—气缸套整体耦合传热模型及应用   总被引:3,自引:1,他引:3  
采用直接耦合的有限元分析方法对一汽油机的活塞组—气缸套系统的瞬态传热过程进行了研究。通过将润滑油膜假设为一维热阻,建立了活塞组—气缸套整体耦合系统的三维传热模型,应用所开发的三维流体动压润滑分析程序对活塞环组沿周向瞬时变化的油膜厚度进行了计算与分析。以LJ377MV汽油机活塞组—气缸套零部件为对象进行了应用研究,获得了更为清晰的多部件间的相互传热关系。  相似文献   

14.
在自制的基于摩擦力的活塞环槽温度限值测试装置上,采用火焰加热活塞模拟内燃机燃烧室的燃烧过程,在加热强度一定的条件下,分别研究不同冷却强度、配对副以及润滑介质时缸套-活塞环间的摩擦力随活塞环槽温度的变化。结果发现:活塞环槽温度限值随冷却强度的增大而逐渐提高;CKS环与镀铬缸套配副时比镀铬环以及喷钼环与镀铬缸套配副时活塞环槽温度限值高;SAE15W/40润滑油作为润滑介质时比SAE40,SAE10W/30润滑油作为润滑介质时活塞环槽温度限值高。  相似文献   

15.
直线度误差对活塞销轴承润滑性能的影响   总被引:1,自引:0,他引:1  
基于Reynolds润滑方程和油膜厚度方程,研究了直线度误差对轴承润滑性能的影响,建立了轴向几何型线的数学表达公式;针对某高速大功率柴油机,建立了详细的单缸计算分析仿真模型;研究了锥形、喇叭形、桶形和三角形误差对活塞销轴承的最小油膜厚度、最大油膜压力、轴瓦最大摩擦力矩、平均摩擦功损失以及油膜温度变化曲线和温度场分布的影响规律.研究结果表明:不同活塞销直线度误差的素线形状对轴承润滑性能的影响不同,素线形状的极值点位置对活塞销动态特性和轴承润滑性能的影响较大,素线曲率的影响要小些;使活塞销素线形状失去对称性,或使活塞销刚度减小的误差,对轴承润滑不利,有导致衬套脱落、烧蚀的危险.  相似文献   

16.
基于有限元方法建立了活塞组摩擦产热计算模型,通过发动机工作过程的计算得到了活塞组摩擦产热计算所需的运动学和动力学边界。以某12缸增压柴油机为研究对象,计算得到了标定工况下其活塞组瞬时摩擦力及瞬时摩擦产热功率随曲轴转角的变化,活塞组平均摩擦产热总功率及其在活塞环、活塞裙部、气缸套的分配,以及活塞组摩擦产热所导致的活塞组、气缸套温升情况,计算分析了转速和负荷对活塞组摩擦产热的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号