共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
行车制动器的使用。在一般道路上行驶遇有情况需要减速或停车时:应预先放松加速踏板,利用发动机的牵阻作用减速,然后再缓缓地踩下制动踩板,达到减速或停车的目的。 相似文献
3.
4.
5.
6.
汽车制动的异常噪音由其制动系统故障所引起,文中对汽车制动系统中发出的各种异常噪音所反映的制动系统故障部位及原因进行了分析。 相似文献
7.
8.
9.
制动系统是汽车最重要的安全装置之一,一旦出现故障,若不及时采取修复措施,后果将不堪设想。微型汽车(如长安、松花江等)制动系统常见故障及其检修方法如下: 相似文献
11.
基于虚拟仪器的汽车制动性能测试系统 总被引:2,自引:0,他引:2
基于“虚拟仪器”的思想,采用“便携式”系统集成方案,进行了汽车制动性能测试系统的开发。给出了测试系统的组成结构,阐述了测试流程和模块功能,并提出了数据处理方法。 相似文献
12.
电动汽车驱动系统再生制动特性分析与仿真 总被引:2,自引:0,他引:2
电动汽车行驶时对能量的需求以及延长续驶里程要求驱动电机具有再生制动能力,既可以提供制动力,又可以将制动过程中的能量回收。通过对汽车制动模式及其产生的能量进行分析。以永磁无刷直流电机系统在作电动汽车动力时实现电气制动为控制策略,仿真了回馈制动,并对仿真结果进行了分析、探讨。结果表明,再生制动的算法是可行的,能满足能量回收要求。 相似文献
13.
Combined control of a regenerative braking and antilock braking system for hybrid electric vehicles 总被引:1,自引:0,他引:1
D. Peng Y. Zhang C. -L. Yin J. -W. Zhang 《International Journal of Automotive Technology》2008,9(6):749-757
Most parallel hybrid electric vehicles (HEV) employ both a hydraulic braking system and a regenerative braking system to provide
enhanced braking performance and energy regeneration. A new design of a combined braking control strategy (CBCS) is presented
in this paper. The design is based on a new method of HEV braking torque distribution that makes the hydraulic braking system
work together with the regenerative braking system. The control system meets the requirements of a vehicle longitudinal braking
performance and gets more regenerative energy charge back to the battery. In the described system, a logic threshold control
strategy (LTCS) is developed to adjust the hydraulic braking torque dynamically, and a fuzzy logic control strategy (FCS)
is applied to adjust the regenerative braking torque dynamically. With the control strategy, the hydraulic braking system
and the regenerative braking system work synchronously to assure high regenerative efficiency and good braking performance,
even on roads with a low adhesion coefficient when emergency braking is required. The proposed braking control strategy is
steady and effective, as demonstrated by the experiment and the simulation. 相似文献
14.
15.
Liang Li Xujian Li Xiangyu Wang Jian Song Xu Ran 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2016,54(2):231-257
Regenerative braking is an important technology in improving fuel economy of an electric vehicle (EV). However, additional motor braking will change the dynamic characteristics of the vehicle, leading to braking instability, especially when the anti-lock braking system (ABS) is triggered. In this paper, a novel semi-brake-by-wire system, without the use of a pedal simulator and fail-safe device, is proposed. In order to compensate for the hysteretic characteristics of the designed brake system while ensure braking reliability and fuel economy when the ABS is triggered, a novel switching compensation control strategy using sliding mode control is brought forward. The proposed strategy converts the complex coupling braking process into independent control of hydraulic braking and regenerative braking, through which a balance between braking performance, braking reliability, braking safety and fuel economy is achieved. Simulation results show that the proposed strategy is effective and adaptable in different road conditions while the large wheel slip rate is triggered during a regenerative braking course. The research provides a new possibility of low-cost equipment and better control performance for the regenerative braking in the EV and the hybrid EV. 相似文献
16.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(1):144-173
ABSTRACTEnergy recovery is a key technology to improve energy efficiency and extend driving range of electric vehicle. It is still a challenging issue to maximise energy recovery. We present an energy recovery mode (mode A) which recovers braking energy under all situations that accelerator pedal (AP) is lifted, brake pedal (BP) is depressed, as well as AP and BP are released completely; and propose a control strategy of regenerative braking based on driver's intention identified by a fuzzy recognition method. Other two modes: (1) recovery braking energy only the BP is depressed (mode B), (2) no energy recovery, have been studied to compare with mode A. Simulations are carried out on different adhesion conditions. Recovered energy and driving range are also obtained under FTP75 driving cycle. Road test is implemented to validate simulation results. Results show that mode A can improve energy recovery by almost 15.8% compared with mode B, and extend driving range by almost 8.81% compared with mode B and 20.39% with the mode of no energy recovery; the control strategy of regenerative braking can balance energy recovery and braking stability. The proposed energy recovery mode provides a possibility to achieve a single-pedal design of the electric vehicle. 相似文献
17.
汽车制动反应时间是汽车制动系统的重要性能参数之一,是影响汽车制动距离的主要因素之一。本文对某汽车气压制动系统进行制动反应时间测试,并分析其制动系统特性。 相似文献
18.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(5):684-699
The sustainable development of vehicle propulsion systems that have mainly focused on reduction of fuel consumption (i.e. CO2 emission) has led, not only to the development of systems connected with combustion processes but also to legislation and testing procedures. In recent years, the low carbon policy has made hybrid vehicles and fully electric vehicles (H/EVs) popular. The main virtue of these propulsion systems is their ability to restore some of the expended energy from kinetic movement, e.g. the braking process. Consequently new research and testing methods for H/EVs are currently being developed. This especially concerns the critical ‘use-cases’ for functionality tests within dynamic events for both virtual simulations, as well as real-time road tests. The use-case for conventional vehicles for numerical simulations and road tests are well established. However, the wide variety of tests and their great number (close to a thousand) creates a need for selection, in the first place, and the creation of critical use-cases suitable for testing H/EVs in both virtual and real-world environments. It is known that a marginal improvement in the regenerative braking ratio can significantly improve the vehicle range and, therefore, the economic cost of its operation. In modern vehicles, vehicle dynamics control systems play the principal role in safety, comfort and economic operation. Unfortunately, however, the existing standard road test scenarios are insufficient for H/EVs. Sector knowledge suggests that there are currently no agreed tests scenarios to fully investigate the effects of brake blending between conventional and regenerative braking as well as the regenerative braking interaction with active driving safety systems (ADSS). The paper presents seven manoeuvres, which are considered to be suitable and highly informative for the development and examination of H/EVs with regenerative braking capability. The critical manoeuvres presented are considered to be appropriate for examination of the regenerative braking mode according to ADSS. The manoeuvres are also important for investigation of regenerative braking system properties/functionalities that are specified by the legal requirements concerning H/EVs braking systems. The last part of this paper shows simulation results for one of the proposed manoeuvres that explicitly shows the usefulness of the manoeuvre. 相似文献
19.
20.
Analysis of a regenerative braking system for Hybrid Electric Vehicles using an Electro-Mechanical Brake 总被引:3,自引:0,他引:3
J. K. Ahn K. H. Jung D. H. Kim H. B. Jin H. S. Kim S. H. Hwang 《International Journal of Automotive Technology》2009,10(2):229-234
The regenerative braking system of the Hybrid Electric Vehicle (HEV) is a key technology that can improve fuel efficiency
by 20∼50%, depending on motor size. In the regenerative braking system, the electronically controlled brake subsystem that
directs the braking forces into four wheels independently is indispensable. This technology is currently found in the Electronic
Stability Program (ESP) and in Vehicle Dynamic Control (VDC). As braking technologies progress toward brake-by-wire systems,
the development of Electro-Mechanical Brake (EMB) systems will be very important in the improvement of both fuel consumption
and vehicle safety. This paper investigates the modeling and simulation of EMB systems for HEVs. The HEV powertrain was modeled
to include the internal combustion engine, electric motor, battery and transmission. The performance simulation for the regenerative
braking system of the HEV was performed using MATLAB/Simulink. The control performance of the EMB system was evaluated via
the simulation of the regenerative braking of the HEV during various driving conditions. 相似文献