首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
为研究桥上纵连板式无砟轨道无缝道岔的力学特性,根据桥上纵连板式无砟轨道无缝道岔的特点,采用有限元方法,建立桥上纵连板式无砟轨道无缝道岔的纵-横-垂向空间耦合计算模型.以铺设在桥上的客运专线18号无砟轨道无缝单渡线为例,研究轨道板/底座板伸缩刚度、摩擦板长度、桥梁形式对桥上纵连板式无砟轨道无缝道岔力学特性的影响.结果表明:减小轨道板/底座板伸缩刚度,对轨道结构变形影响较小,但下部结构受力明显降低,最大降幅约为90%;增加摩擦板长度,有利于控制桥上无缝道岔的受力与变形,可减小下部结构受力,当摩擦板长度由50 m增至100 m时,端刺受力可减小约18%;桥上纵连板式无砟轨道无缝道岔宜铺设在连续梁上.  相似文献   

2.
为研究土质路基上纵连板式无砟轨道动力性能,建立了列车-路基上纵连板式无砟轨道耦合动力学模型.模型中,将纵连板式无砟轨道及路基视为空间层状粘弹性体,采用连续体建模法,建立其运动微分方程并用Galerk in法进行离散变换;分析了CRH2-300动车组以300、350 km/h速度运行时,路基上纵连板式无砟轨道的动力特性,并与京-津城际铁路实测结果比较.结果表明:水泥沥青砂浆最大动应力为46.8~50.5 kPa,小于砂浆层设计指标值15 MPa;动变形随深度衰减较慢,动应力随深度衰减较快;单个转向架产生动应力的影响范围沿线路纵向约为5 m、横向约为3.25 m;轨道板、水泥沥青砂浆层和支承层沿深度方向的变形分布差别不大.  相似文献   

3.
考虑纵连底座板断裂建立了CRTSⅡ型板式无砟轨道与桥梁纵向相互作用的力学模型, 采用有限元法求解力学模型, 确定了无砟轨道关键参数。以某大跨度连续梁桥为例, 降温幅度分别为10、20、30、40、50℃时, 纵连底座板在连续梁上7个代表性位置发生断裂后, 分析了钢轨、轨道板、砂浆和桥梁墩台的纵向力与位移。分析结果表明: 降温幅度为30℃时, 纵连底座板在连续梁上发生断裂时, 钢轨和轨道板的最大纵向附加力分别为155.75、233.21 kN, 断板对钢轨和轨道板纵向附加力有较大影响; 降温幅度不大于10℃时, 纵连底座板在连续梁上任意位置发生断裂, 轨道板与底座板的纵向相对位移均小于0.5 mm, 砂浆不会开裂; 降温幅度为50℃时, 纵连底座板在连续梁上任意位置断裂引起的固定支座纵向附加力最大为196.12 kN, 不会直接造成桥梁固定支座破坏; 建议在维修作业时, 锯切纵连底座板与其铺设时的温度差应不大于10℃, 并检算钢轨的强度是否能满足要求。  相似文献   

4.
为获得服役期间桥上纵连板式无砟轨道疲劳应力谱计算理论,考虑无砟轨道钢筋与混凝土的相互作用、无砟轨道混凝土的开裂与闭合效应、无砟轨道荷载的共同作用和时变特性,分别建立和验证了桥上纵连板式无砟轨道温度场计算模型、多尺度高速列车-纵连板式无砟轨道-桥梁三维有限元耦合动力学模型、纵连板式无砟轨道-桥梁-桥梁墩台纵向相互作用模型,并在此基础上,提出了桥上纵连板式无砟轨道疲劳应力谱计算理论.研究结果表明:利用提出的疲劳应力谱计算理论可得到服役期间桥上纵连板式无砟轨道各部件钢筋与混凝土应力时程曲线及疲劳应力谱;考虑多种荷载工况,能深入探讨桥上纵连板式无砟轨道疲劳破坏机理和影响规律;计算理论可为丰富和完善我国无砟轨道设计理论提供重要依据.   相似文献   

5.
6.
针对中国自主研发的CRTSⅢ型板式无砟轨道在运营阶段的受力变形问题, 以梁-板-轨相互作用原理为基础, 考虑钢轨、轨道板、自密实混凝土层及底座板等细部结构的空间尺寸与力学属性, 运用有限元法建立了高速铁路桥上CRTSⅢ型板式无砟轨道无缝线路精细化空间耦合模型; 计算了列车荷载作用下轨道及桥梁结构的挠曲力与位移, 分析了不同列车荷载作用长度、桥上扣件纵向阻力及墩台顶固定支座纵向刚度对挠曲力与位移的影响。研究结果表明: 在全桥加载情况下, 多跨简支梁桥上钢轨挠曲力在支座处表现为拉力, 跨中表现为压力, 大跨连续梁主桥上钢轨挠曲力在两侧边跨表现为拉力, 中间跨表现为压力, 单线加载时2种桥上有载侧钢轨挠曲力分别达到了38、53 kN, 约为双线加载时的1/2;轨道、桥梁结构纵向力与位移最大值不同时出现在同一工况下, 需要根据不同的检算部件选取最不利的列车荷载作用长度, 并将ZK活载中的集中力设置在跨中位置; 采用小阻力扣件可以改善钢轨受力与变形, 简支梁桥和连续梁桥上钢轨最大挠曲力分别减小了35%和22%, 钢轨纵向位移分别减小了7%和5%, 但轨板相对位移分别增大了26%和30%, 需加强观测以控制钢轨的爬行; 从轨道及桥梁结构的安全性与耐久性角度考虑, 建议将墩台顶纵向刚度控制在设计值的1.0~1.5倍范围内。  相似文献   

7.
为研究纵连式无砟轨道垂向失稳的形态和过程,基于欧拉梁挠曲微分方程推导了温度作用下轨道板上拱波形曲线,得到了上拱矢度与波长的关系;并利用势能驻值原理分析了存在初始上拱时轨道板垂向失稳的平衡路径. 研究表明:与假设变形法相比,解微分方程法精度更高,误差可降低近30%;轨道板的失稳过程包括持稳、胀板和失稳3个阶段,且初始上拱矢度越大,轨道板的持稳极限和胀板极限越小;分析了温度力释放对轨道板上拱平衡路径的影响,表明轨道板失稳的平衡路径会出现强化阶段,且摩擦因数越大,强化阶段出现越早,但变形较小时,温度力释放对轨道板板上拱的影响极小;初始上拱矢度越大,轨道板允许上拱越大,初始上拱小于50 mm时,轨道板难以发生垂向的失稳.   相似文献   

8.
线路爬行对无缝道岔受力与变形的影响分析   总被引:3,自引:2,他引:3  
无缝道岔辙叉及辙跟结构不同,则纵向力的传递机理不同,致使不同结构的无缝道岔受力与变形规律不同。分析比较了固定辙叉、长翼轨可动心轨、短翼轨可动心轨三种辙叉型式、限位器及间隔铁两种辙跟型式的无缝道岔纵向力传递机理及无缝道岔各部件受力及变形的影响。分析结果表明:提高线路阻力,控制无缝道岔前后线路的爬行量,有利于提高无缝道岔的铺设轨温范围。  相似文献   

9.
针对桥墩温度梯度引起的桥上CRTSⅡ型板式无砟轨道纵向附加力与变形, 以梁-板-轨相互作用原理和有限元法为基础, 建立了多跨简支梁桥和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路空间耦合模型, 详细考虑了钢轨、轨道板、CA砂浆、底座板及桥梁等主要结构和细部结构的空间尺寸与力学属性; 采用单位荷载法计算了桥墩纵向温差作用引起的墩顶纵向位移, 分析了墩顶位移影响下桥上无砟轨道无缝线路纵向力与位移的分布规律。分析结果表明: 当各墩顶发生均匀位移时, 多跨简支梁桥和大跨连续梁桥上无砟轨道无缝线路纵向力分布规律及其最大值一致, 且随着墩顶均匀位移的增加而线性增大, 轨板相对位移峰值均出现在两侧桥台、台后锚固结构末端以及第2跨和最后一跨固定支座墩顶处; 当墩顶均匀位移为5 mm时, 多跨简支梁桥和大跨连续梁桥上钢轨最大纵向力分别为79.62和79.54 kN, 最大纵向位移分别为4.94和4.91 mm, 轨板最大相对位移均为0.23 mm; 当各墩顶发生不均匀位移时, 钢轨纵向力及轨板相对位移均在邻墩位移存在差异处发生突变, 多跨简支梁桥上固结机构纵向受力大于大跨连续梁桥; 对于高墩桥梁, 需重点关注相邻墩身高差最大处的轨板相对位移、底座板与桥梁相对位移及固结机构的纵向受力。  相似文献   

10.
详细介绍了道岔区长轨枕埋入式无砟轨道的施工关键技术,主要包括基标的测设、支承层施工、道岔轨排架设与调整、道床混凝土浇注等,同时,阐述了保证道岔区长轨枕埋入式无砟轨道施工质量的技术措施。其施工经验可供同类工程参考。  相似文献   

11.
For the longitudinally coupled ballastless turnout on Leida bridge on Wuhan-Guangzhou passenger dedicated line (PDL) in China, a turnout (cross over)-track slab-bridge deck-pier integrated finite element model was established, in which two No.18 jointless turnouts with movable frogs in form of crossover, longitudinally coupled ballastless track, bridges and piers were regarded as one system. Based on this model, the additional forces and displacement regularities of turnouts, track slab, bridges and piers u...  相似文献   

12.
简支梁桥上无缝道岔纵向力影响因素分析   总被引:3,自引:1,他引:3  
根据桥上无缝道岔纵向相互作用的特点,建立了道岔-桥梁-墩台一体化有限元计算模型,以18号道岔铺设在简支梁桥上为例,分析了钢轨温度、桥梁温度、桥梁跨度、支座布置形式、墩台刚度、辙跟传力部件结构及阻力参数等对简支梁桥上无缝道岔受力与变形的影响.计算结果表明,简支梁桥上的无缝道岔对线路和桥梁的影响范围仅限于与道岔相邻的2孔梁以内;应采用道岔里轨与简支梁伸缩位移方向相反的桥上无缝道岔布置方式;应适当增大道岔范围内桥墩的纵向刚度;桥上无缝道岔辙跟不宜采用间隔铁结构;18号道岔宜铺设在跨度32或48 m的简支梁桥上.  相似文献   

13.
大跨度钢桁斜拉桥上无缝线路制动力的计算   总被引:2,自引:0,他引:2  
为探讨大跨度钢桁斜拉桥上无缝线路制动力的传力机制,基于有限元法和梁轨相互作用理论,建立了反映斜拉索、主塔、半漂浮体系等桥梁特征的梁轨纵向相互作用平面模型,分析了斜拉索刚度、主塔刚度以及半漂浮体系中粘滞阻尼器对制动力的影响,并提出了制动力的简化算法.研究结果表明:制动力满足斜拉桥上铺设无缝线路的要求,且其分布规律与普通桥上相同;粘滞阻尼器对制动荷载下斜拉桥上无缝线路梁轨相互作用的改善较明显,有效降低了梁轨相对位移,减小了制动力;与主塔刚度相比,斜拉索刚度对桥上无缝线路制动力的影响较大,因此,设计桥上无缝线路时,可只考虑斜拉索刚度的影响.  相似文献   

14.
无碴道岔轨道刚度分布规律及均匀化   总被引:6,自引:4,他引:6  
为了揭示道岔铺设在无碴轨道上的刚度分布规律,建立了道岔轨道刚度有限元计算模型.模型中考虑了钢轨抗弯刚度、扣件刚度、基础刚度、滑床台、护轨及间隔铁等因素的影响.以12号提速道岔为例,计算了道岔铺设在无碴轨道上的整体刚度.结果表明:轨道刚度在纵向和横向都存在严重不平顺,里轨与基本轨的整体刚度比最大约为2.418,里轨整体刚度纵向变化率最大约为242%.此外,为了消除道岔铺设在无碴轨道上的刚度不平顺,运用所建立的模型,探讨了均匀道岔轨道刚度分布的扣件刚度设置方式.  相似文献   

15.
连续梁桥上无缝道岔伸缩力与位移计算   总被引:8,自引:0,他引:8  
将钢轨和梁体视为杆单元,轨枕视为梁单元,扣件阻力、道床阻力和桥墩刚度视为弹簧单元,建立了计算连续梁桥上无缝道岔伸缩力与位移的有限元力学模型,根据变分原理和“对号入座”法则建立了模型求解的非线性方程组,分析了道岔设计参数对桥上无缝道岔伸缩力和位移的影响。研究结果表明:伸缩调节器布置在道岔的后端,连续梁固定墩的纵向力可降低43.2%;增加连续梁固定墩纵向刚度有利于减小钢轨位移;连续梁固定支座的位置对系统的受力与变形有双重影响,实际设计时应综合考虑。  相似文献   

16.
本文首先回顾了制挠力在长轨及桥梁中传播的计算方法,并指出其中某些方法中存在的优缺点。然后根据A.5.ARYA和S.R。AGRAWAL导出的乎衡和变形方程,时计算方法作了改进。计算结果表明,如果考虑墩顶位移,作用于桥墩上的制挠力将大大减小。这对设计桥上无缝线路及桥墩都具有重要意义。   相似文献   

17.
18.
为了更好地指导无缝道岔的设计、施工和维护,探讨了不同线路间存在铺设锁定轨温差时,铺设锁定轨温差对无缝道岔受力和变形的影响以及与道岔联结型式、道岔号码、辙叉型式和道床纵向阻力的关系.结果表明,当无缝道岔与相邻线路或相邻道岔间存在铺设锁定轨温差时,传递至无缝道岔上的纵向力增大,导致无缝道岔受力与变形增大.  相似文献   

19.
Introduction Welded turnout is a key part for continuouswelded rails (CWRs). Longitudinal force and dis-placement of rails should be considered in the designof welded turnout. When the distance between thewelded turnouts at places like railway stations is…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号