首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李冬  朱巍志  张哲 《桥梁建设》2012,42(4):107-112
为研究双套拱塔斜拉桥施工控制技术,尤其是塔间索及斜拉索的张拉方案合理性及张拉控制方法,以小凌河大桥为背景,采用MIDAS Civil有限元软件建立该桥空间计算模型,进行施工过程的模拟计算,根据计算结果对拉索安装和张拉方案进行了优化。优化后,赋予塔间索初张拉无应力长度,二次调索时调整到成桥状态的无应力长度;斜拉索自内而外安装并张拉,索力小于250kN的斜拉索,调整其初张拉无应力长度使索力满足测量要求,其他斜拉索直接张拉到设计的无应力长度。监控结果表明,采用优化后的索力张拉方法对该类桥梁进行施工控制,整个施工过程中结构安全、受力明确,得到的成桥索力误差小。  相似文献   

2.
《公路》2017,(12)
为解决大跨度斜拉桥大范围调索施工工序复杂、施工周期长以及受施工荷载和温度影响较大等问题,基于无应力状态法基本原理提出了以斜拉索无应力长度为控制指标的斜拉桥大范围调索技术,通过珲春大桥大范围调索实例论证了该调索技术基本原理的正确性,得出了相比传统大范围调索技术的优势。研究表明,基于无应力状态法基本原理的大范围调索技术以斜拉索无应力长度为控制指标,可以在任何温度、任何荷载状况下进行斜拉索的张拉或放松;减少了按照传统计算方法需要确定各施工状态斜拉索张拉力的工作量;在保证结构受力安全的前提下可以从任何一根或者几根同时张拉,不必按照特定的张拉顺序逐根张拉,减少了施工工序,节省了施工时间,提高了施工效率。  相似文献   

3.
以某座运营多年的斜拉桥调索施工为例,基于无应力状态控制法,结合ANSYS的优化分析功能,先后识别出斜拉桥运营期调索基准状态的斜拉索无应力长度、刚度参数和目标状态的斜拉索无应力长度,基准状态与目标状态斜拉索无应力长度之差即为相应张拉拔出量,而利用ANSYS后处理器先后提取的基准状态与目标状态的计算索力之差即为斜拉桥运营期调索的施工索力调整量。通过调索施工控制实践,验证了该方法计算结果精确,能有效控制斜拉桥运营期调索施工过程的内力与线形,确保预期合理目标状态得以实现。  相似文献   

4.
《公路》2020,(4)
目前关于斜拉桥塔梁固结处横梁的应力状态研究多采用偏经验的计算方法,很少考虑横梁横向预应力束张拉对横梁应力的影响。在未张拉横梁横向预应力束时,斜拉桥塔梁固结处横梁在桥塔自重及斜拉索荷载作用下底板会出现应力值较大的拉应力区。为此,以某斜拉桥为背景,分别对横梁底板、顶板和腹板进行有限元分析,研究了横向预应力束张拉对横梁横向应力的影响,并探究改变横向预应力束张拉控制应力对横梁局部拉应力的优化效果。结果表明,在横梁处张拉横向预应力束可以使横梁预应力储备充足,同时通过改变张拉控制应力,降低了横梁局部拉应力。  相似文献   

5.
本文以"无应力状态法"为指导,追寻斜拉桥成桥索力与分阶段施工索力之间的关系。根据成桥的最优索力找出分阶段施工索力的控制因素;同时也讨论了施工时索力张拉有效控制措施以及解决的问题。这些问题的处理,可供今后斜拉桥的设计和施工提供一定的参考。  相似文献   

6.
结合无应力状态法理论和传统计算的预应力模拟手段,通过推导建立了拉索无应力长度的简便计算式,阐述了应用于斜拉桥拉索张拉施工分析的模拟方法,该方法便于确定拉索施工张拉控制力,并通过工程实例验证了该法的准确性和有效性。  相似文献   

7.
无应力状态控制法——斜拉桥安装计算的应用   总被引:8,自引:7,他引:1  
利用分阶段施工桥梁结构的力学平衡方程和无应力状态按制法的基本原理确定斜拉桥施工中间过程理想状态.以桥梁构件单元的无应力状态量必须满足成桥目标状态要求作为控制条件,直接由斜拉桥最终设计成桥目标状态求解桥梁施工过程状态的内力和线形.混凝土斜拉桥施工过程的收缩和徐变实际上是改变了构件单元的无应力长度和无应力曲率,应通过施工中的预拱度来调整.  相似文献   

8.
徐林  刘琪 《中外公路》2019,39(1):149-154
根据无应力状态控制法的基本理论,以某斜拉桥为例,由成桥最终状态求解施工中间状态,并计算出合理成桥状态的斜拉索无应力长度,以无应力索长作为控制量进行施工正装计算,对比合理成桥状态和施工正装最终状态。结果表明:无应力状态控制法应用于斜拉桥的正装计算结果精确,能确保合理成桥目标状态的实现。  相似文献   

9.
该文以某混凝土无背索斜拉桥为工程依托,根据桥梁结构施工过程中不确定的控制影响因素,基于施工控制原理,运用有限元软件,探究了施工过程中索力超张拉与主梁顶板浇筑超方两种人为因素对结构受力的影响。分析探究表明:主梁采用满堂支架施工的无背索斜拉桥因单根拉索超张拉对主梁线形、应力影响较小;整体拉索超张拉10%时,已接近主梁线形规定值。主梁顶板随机超方浇筑厚度为2 cm时,若不对主梁刚度引起太大变化,则对结构的主梁线形、拉索应力、主梁上、下缘截面应力变化较小,且满足规范要求;主梁的整体超方浇筑会影响主梁的刚度,该依托工程建议主梁顶板整体超方厚度不应超过1.5 cm,否则影响主梁线形验收规定值。  相似文献   

10.
为改善斜拉桥平行钢绞线拉索以索力控制张拉时需多次重复张拉的复杂操作工序,并减少由此产生的累计误差,同时使得张拉完成后每股钢绞线拉力分布更均匀,选择以钢绞线的无应力长度作为控制张拉的对象,设计了以无应力长度控制钢绞线逐根一次张拉到位的施工方案,并对其进行优化。考虑拉索的几何非线性,建立单根钢绞线的几何状态方程,确定其在目标索力下控制张拉的无应力长度;在实际施工中以该无应力长度控制张拉单根钢绞线,运用分阶段局部寻优的数值方法,考虑实际施工误差和塔、梁变形等因素,对实际施工索力与设计目标索力之间存在的误差进行修正,寻求对应实际工况的控制张拉无应力长度,以实现一次张拉到位、张拉完成后每根钢绞线拉力相等且成桥索力也更精确的目的;最后,通过计算机仿真算例模拟实际工况进行验证。结果表明:对给定的设计成桥目标索力,采用无应力长度控制张拉方案可一次张拉到位,考虑施工误差进行优化后控制张拉的无应力长度与对应实际工况的无应力长度相差较小,经过二次优化后,施工张拉索力与设计目标索力的相对误差为0.72%,且张拉完成后每根钢绞线拉力相等,满足施工要求;相关计算程序经固化后嵌入智能千斤顶可用于斜拉索张拉施工。  相似文献   

11.
斜拉桥在梁段浇筑过程中的调索是一项较复杂的工序,无应力状态法通过拉索的无应力长度建立不同施工状态之间的联系,用拉索拔出量进行调索控制,使得调索目的明确,操作简便。而拉索无应力长度计算必须考虑几何非线性效应。该文阐述了采用弹性悬链线解答计算拉索的无应力长度,并将此结果与规范建议的换算弹模方法作对比,两者符合良好。说明换算弹模法应用于斜拉桥无应力状态法施工控制可以满足工程所需的精度要求。该文所提到的无应力状态施工控制方法及计算过程可供同类桥梁的建造参考。  相似文献   

12.
为掌握刚性索悬索桥施工过程中桥梁真实的应力和线形状态,针对刚性索悬索桥的主缆在塔上张拉,其索力形成机理为主动受力的特点,研究计入主缆外包钢套筒、吊杆外包钢套筒作用的主缆张拉有限元法,并采用该方法对无应力索长控制法、张拉力控制法、塔顶有效索力控制法和跨中有效索力控制法4种主缆张拉控制应力方法确定的成桥状态进行比较。结果表明:无应力索长法与张拉力控制法的索力差距十分微小、主缆的存余有效索力与常规悬索桥模型的较为接近、成桥状态的变形最小,较利于结合构件安装线形的调整控制成桥线形。经有限元模拟和张拉控制应力修正,对某刚性索悬索桥进行了施工控制,结果表明实桥测试数据与理论计算符合良好。  相似文献   

13.
在斜拉桥施工过程中,每次张拉的斜拉索都会对其他斜拉索产生复杂的影响,通常采用倒拆法、倒拆-正装法及无应力状态法均存在不同程度的不闭合问题,不容易求解到合理的施工过程索力。为研究确定无背索斜拉桥施工时合理施工状态的方法,以一座主跨180 m无背索斜塔单索面钢混组合斜拉桥为例,采用Midas Civil基于无应力长度结合正装迭代思路建立成桥阶段和施工阶段有限元分析模型。首先根据初始索力求解出无背索斜拉桥初始无应力长度,然后依据最小二乘原理通过多次正装迭代分析,使斜拉桥施工最终状态和成桥目标状态差异达到允许范围内,求解得斜拉桥合理施工状态的索力值。通过实例证明,基于无应力长度正装迭代法可以较好地解决无背索斜拉桥施工正装分析的不闭合问题,完成索力优化,满足工程精度要求。对无背索斜拉桥合理成桥状态索力及合理施工过程索力优化提供了一定参考,具有一定的推广价值。  相似文献   

14.
详细分析了某曲线斜拉桥的施工过程中各阶段的主梁线型及关键截面的应力变化,并与施工过程力学分析结果作了对比。结果表明:转体部分主梁施工过程中实测线型与理论计算值吻合较好;关键截面平均应力及单测点应力均满足施工过程中控制应力的设计和规范要求;转体后通长束的张拉实现了主梁结构良好的连续;整桥主梁线型平顺,满足设计及规范要求;成桥阶段各截面应力水平合理,表明该斜拉桥各施工阶段的质量控制较好。  相似文献   

15.
李炎  陈常松  董道福 《中外公路》2019,39(2):157-161
为了简化斜拉桥施工控制张拉力的计算过程,基于无应力构形控制法的思想,以设计构形为成桥目标,采用无应力索长值作为张拉控制参数进行无应力构形迭代求解,并得到一组满足设计成桥状态的施工控制张拉力,求解过程均由程序自动计算完成,该过程为反复正装迭代过程,且计算过程中充分计入了结构非线性效应和徐变、收缩效应,因此计算结果精度较高。在嘉鱼长江公路大桥施工全过程计算分析中应用结果表明:该方法能够极大方便斜拉桥施工过程中控制张拉力的求解,求解结果与设计结果吻合良好,避免了反复试算的求解过程。  相似文献   

16.
为解决斜拉索无应力长度缺失带来的施工控制精度问题,实现大跨度钢桁梁斜拉桥施工控制的精细化、高效化,丰富合理施工阶段索力的计算方法,基于斜拉索的无应力长度表达式,根据张拉前的结构实际状态与斜拉索目标无应力长度,提出了求解钢桁梁斜拉桥合理施工阶段索力的索长迭代法,给出了迭代计算流程。基于北盘江大桥设计施工流程,分别采用正装迭代法和索长迭代法进行了正装分析。结果表明:在设计施工流程的计算中,当目标成桥状态及杆件无应力构形相同时,索长迭代与正装迭代得出的二张力基本相同,其最大差值仅为该索索力的0.14%,且两者得到的成桥状态十分接近,均能达到预定的目标成桥状态,其中索长迭代得到的标高、索力与目标状态的最大差值分别为3mm、8.9kN,验证了索长迭代法的可行性。  相似文献   

17.
作为一种高次超静定结构体系,斜拉桥在合理成桥状态确定以后需要根据既定的施工工序确定分阶段合理施工状态。斜拉桥合理施工状态计算方法的正确选择对于保证合理施工状态与合理成桥状态的吻合具有非常重要的意义。本文通过建立MIDAS/Civil有限元模型,并基于无应力状态法基本原理确定了斜拉桥合理施工状态。研究表明:无应力状态法在斜拉桥合理施工状态计算中的可行性和合理性,同时可为其他类型桥梁合理施工状态的确定提供参考。  相似文献   

18.
武汉长江二桥斜拉桥安装计算及监控管理   总被引:1,自引:5,他引:1  
介绍了武汉长江二桥斜拉桥主梁施工监控首次采用的“无应力状态控制法”技术及施工监控的一些做法。  相似文献   

19.
《公路》2021,(5)
钢绞线斜拉索在现代斜拉桥建设中得到越来越广泛的应用,其施工方法一般是采用小吨位千斤顶张拉,单股钢绞线的超张拉控制是钢绞线斜拉索施工的关键。基于无应力状态法和悬链线有关理论,在编制钢绞线斜拉索张拉控制程序的基础上,分别针对结构刚度、拉索索长及单根拉索内索股数量对钢绞线超张拉施工的影响进行对比研究,并选取一座矮塔斜拉桥进行算例验证分析。研究得到以下结论:(1)结构刚度越大,钢绞线超张拉不均匀程度越小;(2)拉索索长越大,钢绞线超张拉不均匀性越显著;(3)单根拉索内索股数越多,超张拉不均匀性越显著;(4)总体上,矮塔斜拉桥结构刚度更大、跨度更小,拉索较短,钢绞线超张拉不均匀程度较小。  相似文献   

20.
以某PC斜拉桥维修工程为背景,用GQJS软件研究对斜拉桥施工维修加固全过程模拟计算分析问题.根据全桥拉索索力、桥面线形、塔位、主梁混凝土应力和支座脱空等结构参数模拟维修前结构的实际状态,根据桥梁结构的病害状况对结构参数进行修正,模拟分析维修加固过程截面削弱和恢复、黏贴钢板、张拉体外预应力补强钢筋以及索力调整等施工工况.给出了维修后的结构在运营阶段中的计算分析结果.监测结果表明,维修加固后,主梁线形调整最终达到了预期目标,拉索索力更趋于均匀,维修过程中主梁混凝土应力、塔位以及摆索拉力的变化均在控制范围内,这说明了维修加固的施工控制达到了预期目标,同时保证了结构的安全.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号