首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用海量的离线GPS数据进行出租车需求预测是智能城市与智能交通系统的重要组成部分.本文提出了一种基于深度学习的出租车需求预测方法(CNN-LSTM-ResNet),将出租车GPS数据和天气数据等转化为栅格数据,输入模型获得预测结果.该模型先使用卷积神经网络(CNN)提取城市范围交通流量的空间特征,然后引入残差单元加深网络层数,并利用长短期记忆网络(LSTM)提取GPS数据的临近性、周期性和趋势性,最后通过权重融合以上3个分量,并与外部因素(天气、节假日和空气质量指数)进一步融合,从而预测城市特定区域的出租车需求.采用西安市出租车GPS数据进行实验验证,结果表明,该模型与传统预测模型(如ARIMA,CNN,LSTM)相比具有更高的预测精度.  相似文献   

2.
针对城市轨道交通多站点短时客流量预测问题,本文提出一种将卷积神经网络 (CNN)与残差网络(ResNet)相组合的预测模型(ResNet-CNN1D).模型将原始客流量数据作为输入,利用二维 CNN 与 ResNet 组成深层神经网络,捕捉站点间的空间特征,同时利用一维 CNN捕捉客流量的时间依赖.最后,基于参数矩阵,将时间和空间特征进行加权融合,完成对目标时段中多个站点进出客流量的同时预测.采集青岛市地铁3号线刷卡数据,对模型进行验证. 结果表明,相比现有传统的预测模型(ARIMA,SVR,LSTM,CLTFP,ConvLSTM),本文 ResNet-CNN1D模型具有更好的预测精度.  相似文献   

3.
针对城市轨道交通多站点短时客流量预测问题,本文提出一种将卷积神经网络 (CNN)与残差网络(ResNet)相组合的预测模型(ResNet-CNN1D).模型将原始客流量数据作为输入,利用二维 CNN 与 ResNet 组成深层神经网络,捕捉站点间的空间特征,同时利用一维 CNN捕捉客流量的时间依赖.最后,基于参数矩阵,将时间和空间特征进行加权融合,完成对目标时段中多个站点进出客流量的同时预测.采集青岛市地铁3号线刷卡数据,对模型进行验证. 结果表明,相比现有传统的预测模型(ARIMA,SVR,LSTM,CLTFP,ConvLSTM),本文 ResNet-CNN1D模型具有更好的预测精度.  相似文献   

4.
短时客流预测可为轨道交通运营部门规划调度提供参考,其中短时客流预测的精准性尤为重要,为进一步提高城市轨道站点短时客流预测精准性,提出一种结合集合经验模式分解算法和贝叶斯优化算法的改进LSTM方法。先使用集合经验模式分解算法(EEMD)对地铁站点的客流数据进行分解,以减少数据噪声干扰;再通过贝叶斯优化算法(BOA)对长短时记忆神经网络(LSTM)的超参数进行优化,从而提高模型的参数精确性。采用真实的客流数据验证结果表明:相较于单一LSTM以及单层组合模型,双重叠加后的EEMD-BOA-LSTM组合模型预测结果平均绝对误差降低21.8%~44.8%,均方根误差降低16.9%~47.4%,对短时客流的预测结果误差改善显著。  相似文献   

5.
为精准分析公交线路与站点不同客流的出行特征及时变差异性,结合深度学习理论,提出了一种基于卷积神经网络(CNN)与门控制循环单元(GRU)组合的公交客流分类预测模型;融合匹配公交一卡通刷卡、公交车GPS轨迹、线路和站点基础信息、气象等多源数据,实现公交客流数据重构;采用K-Medians算法将乘客分为通勤类和非通勤类;以乘客类型、历史客流量、时段、高/平峰、星期、降水量、重大活动等因素为输入向量,分别建立CNN与GRU单一模型,并利用均方误差、均方根误差、平均绝对误差为评价指标,开展预测;针对单一模型不适用多特征时间序列预测等问题,分别构建了由CNN和GRU组合的线路客流和断面客流预测模型;以北京市特15路公交为例,预测工作日与非工作日场景下的线路及断面的分类客流。分析结果表明:对于通勤类和非通勤类线路及断面客流,组合模型的均方误差相比单一模型平均降低了57.932、13.106和33.987,均方根误差平均降低了1.862、1.058和1.538,平均绝对误差平均降低了1.399、0.487和0.613,可见,多源数据驱动下的CNN-GRU组合模型具有良好的预测性能。   相似文献   

6.
针对现有基于CNN、GRU及CNN-LSTM的船舶轨迹预测模型精度不高、运行时间较长等问题,提出一种基于卷积神经网络(Convolutional Neural Networks, CNN)和门控循环单元(Gated Recurrent Unit, GRU)的船舶轨迹预测混合模型(CNN-GRU).构建了基于船舶AIS信息的船舶轨迹特征表达方法,以目标船舶连续4个时刻的轨迹特征值作为输入,以第5个时刻轨迹特征值作为输出,训练构建的CNN-GRU轨迹预测网络,对未来船舶轨迹进行预测,并与现有模型进行对比.实例验证表明:CNN-GRU模型的预测精度显著提升,经度误差不超过3×10-5(°),纬度误差不超过5.5×10-4(°),相较于CNN-LSTM模型,预测效率显著提高,运行时间减少19.1 s.  相似文献   

7.
风电功率预测对电力系统的稳定运行与经济调度至关重要。为充分挖掘历史数据中的有效信息以提高风电功率短期预测精度,提出一种基于卷积神经网络(convolution neural network,CNN)和长短期记忆(long short-term memory network,LSTM)网络模型的风电功率短期预测方法,利用CNN序列特征提取能力进行有效信息的提取,保留更长的有效记忆信息以解决梯度弥散问题,弥补了LSTM网络模型面对过长序列时出现不稳定与梯度消失现象的不足。用国内某风电场数据进行实验,预测结果表明文中提出的方法与反向传播神经网络和LSTM网络预测方法相比,具有更高的预测精度。  相似文献   

8.
精准且快速的短时交通流预测是智能交通发展的重要组成部分.本文针对当前交通流预测模型不能充分提取交通流数据的时空特征、预测性能容易受到外界干扰因素影响的问题,提出一种基于深度学习的短时交通流预测模型,该模型结合卷积神经网络(Convolutional Neural Network,CNN)与支持向量回归分类器(Support Vector Regression,SVR)的特点:在网络底层应用CNN进行交通流特征提取,并将提取结果输入到SVR回归模型中进行流量预测.为验证模型的有效性,取G103国道的实际交通流量数据进行试验.结果表明,提出的预测模型与传统的预测模型相比具有更高的预测精度,预测性能提高了11%,是一种有效的交通流预测模型.  相似文献   

9.
针对机场场面交通可获数据的局限性,为精准提取机场交通数据时空特征及预测场面交通流量。首先,基于推出控制理论,建立机场场面运行数值仿真模型,得到因数据局限无法获取的预测指标;其次,搭建卷积神经网络(CNN)与长短期记忆网络(LSTM)组合预测模型提取时空特征;最后,以河南郑州机场为例进行试验验证,比较模型在不同训练数据量下的预测性能与误差指标,结果表明基于仿真指标的预测模型预测结果精确度高且性能稳定。  相似文献   

10.
为降低样本噪声对客流预测模型的干扰, 结合深度学习理论, 提出了一种基于经验模态分解与长短时记忆神经网络的短时地铁客流预测模型; 将预测过程分为3个阶段, 第1阶段预处理原始地铁刷卡数据, 构建进(出)站客流时间序列, 运用经验模态分解法将时间序列转化为一系列本征模函数及残差, 第2阶段利用偏自相关函数确定长短时记忆神经网络的输入变量, 第3阶段基于深度学习库Keras, 完成长短时记忆神经网络的搭建、训练及预测; 以上海地铁2号线人民广场站客流数据验证了模型的有效性。计算结果表明: 与代表性的预测模型(差分自回归移动平均模型、支持向量机、经验模态分解与反向传播神经网络、长短时记忆神经网络)相比, 经验模态分解与长短时记忆神经网络预测模型分别将工作日高峰、平峰、全日的进(出)站客流预测精度分别至少提升了2.1%(2.5%)、2.7%(3.5%)、2.7%(3.4%), 将非工作日全日的进(出)站客流预测精度至少提升了3.3%(3.5%), 说明经验模态分解与长短时记忆神经网络的组合是一种预测短时地铁客流的有效模型; 当预测步长由5 min逐渐增加至30 min时, 工作日高峰、平峰和全日进(出)站客流的平均绝对百分比预测误差分别由14.8%(13.9%)、16.8%(17.4%)和16.6%(17.0%)逐渐降低至7.0%(6.2%)、8.3%(7.5%)和8.1%(7.4%), 说明该方法预测误差与预测步长呈负相关。   相似文献   

11.
地铁客流的变化规律存在着一定周期性和潮汐性,针对地铁客流的预测有助于提高城市轨道系统的运营效率,实现轨道交通智慧化运营。为提高地铁短时客流预测结果的准确度,提出了一种基于Logistic混沌映射麻雀算法(Logistic-SSA)优化BP神经网络的地铁客流短时预测模型。该模型通过Logistic混沌映射初始化麻雀算法种群,再利用改进后的麻雀算法优化BP神经网络,达到提高BP神经网络的全局搜索能力和收敛效率;以深圳地铁西乡站进、出站AFC刷卡数据为例,利用构建的预测模型开展客流预测实验,并通过3种准确性评价指标(MAE、RMSE、MAPE),评价改进前后模型预测的准确性。研究结果表明:改进的Logistic-SSA-BP预测模型平均绝对百分误差分别为14.96%和13.73%;与传统BP预测模型相比,其客流预测结果具有更高的准确性。  相似文献   

12.
为确定合理的列车开行对数,首先分别以BP神经网络(BP Neutral Network)和极限学习机(Extreme Leaning Machine, ELM)构建基准模型;在此基础上,结合经验模态分解算法(Empirical Mode Decomposition, EMD)和变分模态分解算法(Variational Mode Decomposition,VMD)适合处理非线性、非平稳数据的特点,对客流发送数据进行处理,然后分别与基准模型组合形成组合模型,并提出了月度客流发送量的概念,建立了滚动的月度客流发送量预测机制。最后,以兰州西站衔接各线的客流日发送数据为原始数据,以各基准模型和组合模型对月度客流发送量进行了预测,并对预测结果和指标加以分析对比。研究结果表明:(1)以客流发送量作为原始数据,VMD算法分解效果优于EMD算法;(2)对比各基准模型和组合模型,VMD-BP神经网络组合模型预测精度最高,适用于铁路车站月度客流发送量预测问题。  相似文献   

13.
客流量预测是城市智能交通系统的重要组成部分.为实现客流量的准确预测,首先采用变分模态分解(VMD)将时序客流数据分解成不同时间尺度下的本征模态函数(IMF),降低数据噪声对客流预测模型的影响,再结合长短时记忆神经网络(LSTM)进行预测,提出VMD-LSTM预测模型.采集明尼苏达州州际轨道交通客流数据对模型进行验证.结...  相似文献   

14.
针对交通小区生成交通的短时预测需求,提出了综合小波分析和BP神经网络的短时预测方法.预测方法主要利用dbN小波函数对交通小区生成交通进行小波分解,利用BP神经网络对分解后的多频段波形进行短时预测,最后通过波形重构获得交通小区生成交通的短时预测结果.在构建综合小波分析和BP神经网络短时预测模型基础上,采集交通小区的实际交通生成数据,并构建短时预测的对比模型,检验构建模型的预测精度.检验结果表明:在交通小区的生成交通短时预测方面,综合小波分析和BP神经网络的组合预测模型比单独采用BP神经网络进行预测的精度更高.  相似文献   

15.
针对目前城市轨道交通短时客流量预测模型在构建特征时容易忽略客流变化周期依赖性的不足,提出一种考虑多时间尺度特征的混合深度学习模型(GRU-Transformer),该模型由添加注意力机制的 GRU(Gate Recurrent Unit)神经网络(Attention- GRU)和改进的 Transformer(ConvTransformer)两模块并行构成。首先,对周周期、日周期及相邻时段这3种时间尺度下的客流数据分别进行建模,并合并各周期数据作为模型输入。其次,搭建Attention-GRU和Conv-Transformer模块分别挖掘数据连续性与周期性特征,融合特征后输出预测值。最后,采集上海市地铁2号线两站点AFC(Automatic Fare Collection)客流数据,预测5 min时间粒度下的进出站客流量。为分析各模型参数对预测结果的影响,开展模型精细化调参实验,基于所得最优参数组合验证和评估模型 。 结果表明 ,相较于5个基线模型(BPNN(Back Propagation Neural Network)、CNN (Convolutional Neural Network)、GRU、CNN-GRU 及 Transformer)和4个GRU-Transformer消融模型,本文提出的GRU-Transformer模型预测精度最高,具有较好的实用性。  相似文献   

16.
基于径向基神经网络的大连站客运量预测   总被引:3,自引:0,他引:3  
针对铁路客运量在时序上的复杂非线性特征,采用径向基函数(RBF)神经网络对铁路客运量时间序列进行预测.用自相关分析技术分析时间序列的延迟特性,据此确定RBF神经网络的输入、输出向量,建立了基于MATLAB7.0环境下的RBF神经网络客运量预测模型,并用大连站实际客运量数据进行了验证.结果表明,该模型拟合精度和预测精度较高、计算速度较快.  相似文献   

17.
针对铁路客运量在时序上的复杂非线性特征,采用径向基函数(RBF)神经网络对铁路客运量时间序列进行预测.用自相关分析技术分析时间序列的延迟特性,据此确定RBF神经网络的输入、输出向量,建立了基于MATLAB7.0环境下的RBF神经网络客运量预测模型,并用大连站实际客运量数据进行了验证.结果表明,该模型拟合精度和预测精度较高、计算速度较快.  相似文献   

18.
针对城市轨道交通短时客流的非线性分布特征,本文提出一种基于变点模型、小波变换、自回归滑动平均模型(ARMA)的组合预测模型.首先,利用变点模型将车站进站客流数据划分为具有不同特征的时间段;然后,使用自相关和偏自相关分析确定时间序列的平稳性;之后,分别采用 ARMA模型与小波 ARMA组合模型对北京市某地铁站的进站量进行客流预测,并对预测结果的误差进行了比较分析.经过对比分析表明,小波 ARMA组合模型能够较好地预测出未来的短时客流,预测效果优于单一 ARMA模型,计算速度也能够满足短时预测的需求,该方法可为城市轨道交通的运营组织提供参考建议.  相似文献   

19.
针对城市轨道交通短时客流的非线性分布特征,本文提出一种基于变点模型、小波变换、自回归滑动平均模型(ARMA)的组合预测模型.首先,利用变点模型将车站进站客流数据划分为具有不同特征的时间段;然后,使用自相关和偏自相关分析确定时间序列的平稳性;之后,分别采用 ARMA模型与小波 ARMA组合模型对北京市某地铁站的进站量进行客流预测,并对预测结果的误差进行了比较分析.经过对比分析表明,小波 ARMA组合模型能够较好地预测出未来的短时客流,预测效果优于单一 ARMA模型,计算速度也能够满足短时预测的需求,该方法可为城市轨道交通的运营组织提供参考建议.  相似文献   

20.
为加强对重点营运车辆异常驾驶行为的监督与检测,本文基于时间序列符号化算法(TSA) 与多尺度卷积神经网络模型(MCNN)提出一种组合模型TSA-MCNN,用于识别重点营运车辆异常驾驶行为。首先,对北斗数据进行预处理,并基于营运车辆存在多种车型、多种速度限制、多种异常驾驶行为的特点划分4种异常驾驶行为,构建异常样本数据集。其次,构建TSA-MCNN模型识别样本数据集,其过程分为两阶段,第1阶段,针对重点营运车辆的特点,引入能够粗粒化处理数据特征的时间序列符号化算法与能够多通道参数输入的多尺度卷积神经网络进行组合,并基于Keras库完成TSA-MCNN模型的搭建;第2阶段,利用样本数据集作为模型的输入变量,完成模型的训练、测试与识别。最后,以广河高速重点营运车辆北斗数据验证TSA-MCNN模型的性能, 同时,与异常识别传统算法的卷积神经网络(CNN)模型与动态时间扭曲-K最近邻(DTW-KNN)模型进行对比分析。验证结果表明:TSA-MCNN模型整体识别准确率为97.25%,相对于CNN模型与DTW-KNN模型提高了20.50%与5.63%。其中,TSA-MCNN模型对于正常驾驶行为、超速驾驶行为、紧急停车行为、临时停车行为、低速驾驶行为的识别精确率相对于CNN模型(DTW-KNN模 型)分别提高了26%(13%)、26%(6%)、23%(5%)、28%(3%)、0(0),说明该模型对于重点营运车辆异常驾驶行为的识别具有良好的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号