首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过对单轮车辆模型滑转的过程参数分析,定性研究了角加速度与滑转率的相瓦关系.并结合实车滑转试验,研究了车辆驱动轮附着系数、滑转率以及角加速度在试验过程时间中的变化情况.结果表明,在驱动轮滑转过程中滑转牢随着角加速度的增大而不断增大,这为采用驱动轮角加速度进行路面识别提供了可靠的理论依据.  相似文献   

2.
针对滑转率现有的测量方法和汁算方法的不足,分析了产生测量和计算偏差的原因,将金属带回转中心的偏移理论引入到滑转毕的计算模型中,提出了一种新的滑转率测量与计算模型.并以该模型为基础设计了滑转率测量试验装置.试验结果表明,新的测箅模型达到了纠正原有方法偏差、实现高精度测算CVT滑转率的目标.  相似文献   

3.
汽车传动系自激扭振机理研究   总被引:6,自引:0,他引:6  
本文对汽车传动产生自激振动的机理进行了系统的理论分析与试验研究,提出当滑转率超过起振滑转率门槛值时传动系能产生硬激励特性的自激振动,并研究了自激振动系统的能量反馈与控制环节,为抑制自激振动提供理论根据。  相似文献   

4.
汽车"打滑"有两种情况:一是制动时的车轮滑移;二是汽车驱动时的车轮"滑转".车轮"滑转"可以用滑转率S表示.  相似文献   

5.
本文研究四轮独立驱动(4WID)纯电动汽车的驱动防滑(ASR),提出基于门限角加速度和滑转率的模糊滑转率控制方法。利用4WID电动汽车驱动力矩独立可控,转速和驱动力矩容易获得的特点,以实际角加速度与门限角加速度之差和实际滑转率作为模糊控制器输入,使得实际角加速度接近门限角加速度,控制各轮的驱动力矩实现驱动防滑。与PID控制进行对比,仿真结果表明,基于门限角加速度的模糊滑转率控制,能有效的降低滑转率,抑制驱动轮的滑转,提高了电动汽车在低附着路面加速行驶的稳定性和安全性。  相似文献   

6.
对全液压平地机的抗滑转问题进行了研究,提出了电子抗滑转解决方案,给出了方法的原理、思路以及实现流程;重点分析了滑转判定和抗滑转解除条件,为充分发挥牵引力而引入的恒速控制算法以及马达极限超速保护等实现要点;给出了样机实验的数据曲线与结论。  相似文献   

7.
全液压推土机关键技术参数研究   总被引:8,自引:2,他引:8  
研究了全液压推土机的关键技术参数———滑转率、效率、牵引比和比功率。通过分析牵引效率在滑转曲线上的配置,给出了全液压推土机的额定滑转率为12%~15%。从理论和试验两个方面深入分析了压力和排量对泵—马达系统效率的影响,得到了典型泵—马达效率的试验数据拟合公式。在对全液压推土机驱动系统的匹配目标设计时,除了满足扭矩和功率上的匹配要求外,还应考虑整机的效率。变量泵的变化范围最好控制在βp=0.4~1,变量马达的变化范围最好控制在βm=0.3~1,才能保证整机有较好的牵引性能。通过对典型全液压推土机的统计分析,确定牵引比均值为1.48,比功率为7.2kW/t,具体取值应该稍大于或等于该均值。  相似文献   

8.
林翔  邓亚东 《北京汽车》2009,(3):4-6,13
详细介绍了车辆滑转率测量和计算的方法,分析了一种以滑转率为控制信号的中央轮胎充放气系统(CTIS)的结构和工作原理。  相似文献   

9.
本文主要就售后退回的主动锥齿轮尾部掉头导致整桥失效的现象进行原因分析,通过对各相关件材质及尺寸方面的检测及分析,最终发现主动轮上安装30312轴承轴颈尺寸不符合技术要求,使用发生滑转,导致与主动轮花键配合的未经调质处理的凸缘产生严重磨损,最终导致主动轮发生掉头现象。  相似文献   

10.
于英  孟峰  贾会星  田晋跃 《汽车工程》2007,29(9):787-790
根据串励直流电动机工作特性,利用车辆行驶过程中较易测得的驱动电机工作电流及驱动轮转速,运用MATLAB/SIMULINK软件,建立基于卡尔曼滤波的驱动轮滑转率模型和寄生功率模型并进行仿真;通过道路试验对电动机工作电流和驱动轮转速的检测,实时预测驱动轮的滑转率与产生的寄生功率。结果表明,驱动轮滑转率和寄生功率的仿真结果与试验结果非常接近。  相似文献   

11.
双电机独立驱动方式的电动汽车,由于电机的特性,在不需要转向角信号的条件下,通过由于驱动轮转速的不同,使驱动电机的电流不同,从而引起了驱动轮的不同滑转率的分析,提出了在低速时,通过滑转率的不同而进行调节,实现电子差速的自调节功能;在高速区,由于工作在限流状态,使驱动转矩基本相同,实现了电子差速的自调节功能。由于控制器有限流作用,限制了单电机的输出力矩,使单电机不足以驱动整车,双电机的共同驱动,实现电子差速的自调节功能。  相似文献   

12.
杨其华  张乃标 《北京汽车》2008,(5):28-31,37
双电机独立驱动方式的电动汽车,由于电机的特性,在不需要转向角信号的条件下,通过由于驱动轮转速的不同,使驱动电机的电流不同,从而引起了驱动轮的不同滑转率的分析,提出了在低速时,通过滑转率的不同而进行调节,实现电子差速的自调节功能;在高速区,由于工作在限流状态,使驱动转矩基本相同,实现了电子差速的自调节功能。由于控制器有限流作用,限制了单电机的输出力矩,使单电机不足以驱动整车,双电机的共同驱动,实现电子差速的自调节功能。  相似文献   

13.
双电机独立驱动方式的电动汽车,由于电机的特性,在不需要转向角信号的条件下,通过由于驱动轮转速的不同,使驱动电机的电流不同,从而引起了驱动轮的不同滑转率的分析,提出了在低速时,通过滑转率的不同而进行调节,实现电子差速的自调节功能;在高速区,由于工作在限流状态,使驱动转矩基本相同,实现了电子差速的自调节功能。由于控制器有限流作用,限制了单电机的输出力矩,使单电机不足以驱动整车,双电机的共同驱动.实现电子差速的自调节功能。  相似文献   

14.
转向加速工况下汽车驱动防滑控制系统滑转率算法研究   总被引:1,自引:0,他引:1  
汽车低速转弯加速时,用后轮轮速作为参考车速计算驱动轮滑转率会造成计算偏差,引起驱动防滑控制系统误干预,为此提出了驱动轮滑转率计算的修正算法.该修正算法不需要增加前轮转角传感器,而是采用两非驱动轮轮速估计车身横摆角速度和汽车前轮转角,进而计算出前轮参考轮速,并将前轮参考轮速代替车速对转弯工况的驱动轮滑转率计算进行修正.试验结果表明,该修正算法消除了滑转率计算误差,可防止汽车在高附着路面上转弯加速时驱动防滑控制系统的误干预.  相似文献   

15.
为了探讨振荡压路机在压实过程中振荡轮与被压实路面间存在滑转的工况下,被碾压材料所能吸收的有效压实能量,采用能量平衡的理论,通过图解对比方法定性分析了消耗在路面压实和滑转损失过程中的能量分配,建立了被碾压材料吸收有效压实功的计算模型,研究了激振能量、铺层压实程度、有效压实功与滑转率的关系,提出了最佳滑转率的概念。研究和试验结果表明:当振荡压路机在最佳滑转率状态下工作时,被碾压材料能够吸收最大的有效压实功;随着碾压遍数的增加,应逐步减少输给振荡轮的激振能量;被碾压材料吸收有效压实功的计算模型与实际的压实效果试验相吻合。  相似文献   

16.
凌志轿车防滑转电子控制(简称TRC)系统.为了保证驾驶员和乘员的安全,是继防抱死制动(ABS)系统之后.研制并应用于车轮防滑的电子控制系统.能有效地防止轿车在起步、加速和在滑溜路面行驶时的驱动车轮“滑转”。ABS控制的是汽车制动时车轮的“拖滑”,在现代中高档轿车上已装用TRC和ABS组合控制器,通过对滑转车轮施以制动力或控制发动机的动力输出来抑制车轮的滑转,避免轿车牵引力和行驶稳定性下降,预防行车事故的发生,现以凌志LS400为例.对TRC系统继电器电路故障作如下分析。  相似文献   

17.
3.4牵引动力学模型的分析与总结 通过上述机器牵引系统各部件的运动方程式(1.50)~式(1.56)的联立求解,可以分析机器的各种工作状态,计算出相应的动态性能指标.对机器系统来说,输入为发动机的循环供油量△g=△g(h,ωe),或者说是供油拉杆的位移h(PT的压力pe);干扰有工作负荷Fx(t)和影响行走机构滑转性能的诸因素,在取静态滑转曲线计算时,干扰仅为工作负荷Fx(t);系统输出为牵引力fk(t)、行走速度V以及在此基础上计算的牵引功率NT、牵引效率ηT、牵引比油耗gT、牵引小时油耗GT等.  相似文献   

18.
集料是混合料结构形成的决定性成分,其岩性性质、物理力学指标以及外观形状的差异,对于混合料抗滑特性的影响,体现在路面微观结构和宏观构造深度的形成和保持方面,同时也将导致混合料的水稳定性和疲劳耐久性方面的性能发生很大的变化.文中对粗集料对沥青混合料的抗滑性能、水稳性能及疲劳性能的影响进行了系统试验研究,得出了相应结论.  相似文献   

19.
双电机独立驱动电动车电子差速技术   总被引:1,自引:0,他引:1  
闵红 《天津汽车》2011,(12):28-30
针对双电机独立驱动电动车电子差速问题进行了研究,根据ACKERMANN汽车转向模型和电机的特性及双电机独立驱动的特点,提出了以2个驱动轮的相对滑转率(6)为控制变量进行调速控制的方法,并确定了6的临界值,在6≤2%时,采用自适应调节的电子差速模式,实现电子差速功能;在占〉2%时,采用闭环有差反馈式调压系统调节,使占≤2%,实现电子差速的自调节功能。仿真模拟结果表明,此电子差速控制策略能够保证电动车在直线和转向行驶达到差速目的,并能以最佳的驱动力行驶。  相似文献   

20.
刘成 《汽车维修》2008,(9):8-11
TRC系统又称为牵引力控制系统,也有很多公司把它叫做ASR系统(驱动防滑系统)。TRC系统的作用是防止汽车在起步、加速和湿滑路面上行驶时驱动轮发生滑转。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号