首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用一维可压缩非定常不等熵流动模型和广义黎曼变量特征线法,研究时速600 km等级高速磁浮列车交会时隧道内压力峰值的分布规律,分析隧道长度、隧道净空面积、列车运行速度和列车长度对列车交会时隧道内压力峰值的影响规律。结果表明:隧道中央测点的压力波动最剧烈,压力峰值以隧道中央位置为中心点往隧道2侧对称分布;列车运行速度为400~650 km·h~(-1)、列车编组为3~10辆时,基于隧道内压力峰值的最不利隧道长度在160~1 000 m范围;隧道内压力峰值均随隧道净空面积增加而减小,随列车运行速度的增大而急剧增大,列车长度对其基本无影响;拟合发现隧道内压力峰值与隧道净空面积约-1.1~-1.4次幂成正比,与列车运行速度约2.0~3.8次幂成正比;当采用现有350 km·h~(-1)等级高速铁路双线隧道净空面积标准,并且2列列车以600 km·h~(-1)交会时,隧道内压力峰值高达±30 kPa,必须增大隧道净空面积或增设竖井等减压设施以满足ERRI医学健康标准。  相似文献   

2.
基于标准κ-ε双方程湍流模型,采用滑移网格方法,对不同编组长度(3车编组,4车编组,5车编组和8车编组)高速列车明线交会以及于各自最不利长度隧道通过和交会工况进行模拟,并对车体表面产生的交变压力载荷进行研究。数值计算结果和实车试验结果进行对比,波形吻合度高,误差不超过6%。研究结果表明:列车明线交会时,列车压力波尾波幅值由3车编组到8车编组减小11%;列车于各自最不利长度隧道通过和交会时,编组长度不改变列车车体表面压力波变化规律,但对幅值有较明显影响;列车通过隧道时压力波峰峰值由3车编组到8车编组增大14.0%,列车于隧道中心处交会时该值增大26.4%。  相似文献   

3.
采用数值计算方法,对不同编组长度高速列车以不同速度(200,250,300和350 km/h)通过隧道和于隧道中心交会进行模拟,并对产生的列车风进行分析研究。其中,数值计算方法进过实车试验数据验证,波形吻合度较好。研究发现,列车尾流引起的列车风最大,这一现象在靠近列车一侧区域尤为明显。编组长度对隧道内列车风影响显著,长编组引起的列车风明显大于短编组,增幅可达70.49%。单列车通过隧道时产生的列车风与车速近似呈线性关系,而列车于隧道内交会产生的列车风风速与车速关系已不再是线性;且相对单车工况,交会工况列车风增幅可达1.6倍。隧道内列车风峰值在空间分布存在显著差异。  相似文献   

4.
基于风压载荷空气动力学控制方程,利用计算流体力学软件FLUENT,分析高速列车在不同线间距隧道内,以不同速度级等速交会时的车体表面风压和受到的气动力;将隧道内交会时受到的气动力以时程荷载的形式施加到车辆动力学模型中,分析其对各项车辆动力学性能的影响规律,并进行安全性和平稳性指标分析。结果表明:列车在隧道内等速交会时,头车所受的气动阻力、升力、横向力最大;高速列车表面所受的风压极值与速度的2.2~2.3次方成正比,所受的气动阻力、升力、横向力与速度的1.8~2.4次方成正比;隧道内高速交会对车辆安全性指标影响不大,仅在交会瞬间产生较大的车体横向振动,当运行速度达到400km·h^-1时各项安全性、舒适性指标均满足限值要求。  相似文献   

5.
近年来,在多条高速线路上对各型高速列车进行了一系列隧道通过和隧道交会试验。现通过对这些空气动力学实车试验数据进行详细分析,获得了高速列车通过隧道和在隧道内交会过程中的压力波特性,以及压力波随列车长度、运行速度和隧道长度等影响因素变化的规律。  相似文献   

6.
列车空气动力性能与流线型头部外形   总被引:5,自引:0,他引:5  
采用数值计算、动模型试验、风洞试验、实车试验和理论分析等方法,研究列车流线型头部长度、宽度、高度及耦合外形对列车交会压力波、空气阻力和升力的影响,得到一系列理论关系式。研究结果表明:①增加列车流线型头部长度,可以有效地改善列车空气动力性能,列车交会压力波随流线型头部长度增加而呈对数减小,头车阻力、升力绝对值均随流线型头部长度的增加呈线性减小,尾车阻力与流线型头部长度呈二次幂减小;②流线型头部纵向对称面最大控制型线从外凸到内凹,列车空气阻力、空气升力和交会压力波基本不变,减小鼻尖部位过渡曲线的曲率半径可以有效降低列车交会压力波;③流线型头部俯视最大控制型线为方形时产生的交会压力波最小,尖梭形的头车空气阻力和升力绝对值较小;④减小列车空气阻力和降低列车交会压力波,既矛盾又统一,列车气动头部外形设计需要综合考虑各种因素。  相似文献   

7.
基于三维、非定常雷诺时均N-S方程和标准k-ε双方程湍流模型,采用滑移网格技术,对高速列车明线交会及隧道内交会时的空气流场进行数值模拟。研究不同线间距对高速列车交会压力波的影响。研究结果表明:明线交会压力波幅值随线间距的减小而增大,线间距从4.6 m变为4.4 m时,交会压力波幅值增大约8.3%;线间距从4.4 m变为4.2 m时,交会压力波幅值增大约8.5%;隧道交会压力波头波幅值随线间距的减小而增大,对非交会时段隧道压力波影响不大,线间距从4.6m变为4.4 m时,车体表面测点交会压力波头波幅值增大5.7%;线间距从4.4 m变为4.2 m时,交会压力波头波幅值增大5.8%;隧道壁面测点压力波幅值增加约2%,且隧道内2车交会,靠近交会位置的测点压力变化要远大于远离交会位置的测点。  相似文献   

8.
通过现场测试高速铁路列车引起的隧道气动效应,分析列车速度、列车编组、隧道长度等因素对气动荷载、振动加速度和微气压波的影响。结果表明:列车通过隧道时,隧道壁面及附属设施表面气动荷载峰值与列车速度近似呈2次方关系;8编组列车通过较短隧道时气动荷载峰值大于通过较长隧道时,16编组列车则相反;控制箱左右两侧气动荷载峰值相差较小,顶底部气动荷载峰值相差明显;在隧道防护门中部气动荷载峰值大于上部和下部,上部和下部气动荷载峰值接近;隧道壁面无显著振动,隧道附属设施表面振动明显;在距隧道入口200 m处压力梯度峰值与列车速度呈3次方关系,列车运行速度超过一定值后,出口附近压力梯度峰值高于入口附近;隧道出口20 m处微气压波峰值与列车速度近似呈6次方关系。  相似文献   

9.
高速磁浮列车通过隧道过程中将引起剧烈的压力波动,造成司乘人员耳感舒适性、车体及其零部件、隧道衬砌及辅助设施的气动疲劳寿命问题,有必要对磁浮列车高速通过隧道时压力波效应进行研究。采用一维可压缩非定常不等熵流动模型和广义黎曼变量特征线法对单列车通过隧道时车体压力载荷进行数值模拟研究,初步揭示隧道长度、列车速度、阻塞比对车外压力波的影响规律;得出时速500~600 km/h速度下基于最大正负值和最大压力峰峰值的最不利隧道长度;论证了列车通过隧道产生的压力波幅值与列车速度平方成正比的适用范围,总结了压力最值与速度的拟合关系式。本文研究方法和结果可为车体设计选用气动载荷提供参考依据。  相似文献   

10.
列车交会时车体两侧压差影响列车运行稳定性、可靠性和舒适度。基于三维、非定常、可压缩流动的雷诺平均N-S方程和SSTk-ω两方程湍流流动模型,采用重叠网格技术,模拟高速列车在隧道中央等速交会,研究了速度(250km/h、350km/h和400km/h)、线间距(4.6m、4.8m和5.0m)对车体两侧压差波动特性的影响。研究结果表明:车体两侧压差时间历程曲线形状相似于明线交会压力波时间历程曲线形状,在通过列车的车头和车尾经过测点时,压差值分别产生先正后负和先负后正的脉冲波,而且车尾通过时产生的压差明显比车头经过时低;车体两侧最大正压差值、最大负差值以及压差幅值均与速度平方成正比,400km/h下压差最值平均比350km/h大26%,350km/h下压差最值平均比250km/h大92%;车体两侧最大正压差值、最大负差值以及压差幅值均与线间距成负指数关系,压差最值随着线间距变化的增长百分比基本在9%左右。  相似文献   

11.
研究目的:针对列车横截面积与隧道横截面积比值阻塞比的不同,分析计算长隧道内运行的高速列车在不同速度下,由于空气动力学效应引起的列车阻力及热量增加,综合考虑辅助设备发热及隧道壁面热传导导致的能量损失,合理预测不同阻塞比下高速列车运行引起的隧道内温度升高及隧道内温度随时间的变化,得出长隧道内由于高速列车运行引起的热、力效应.研究结论:通过计算与分析表明,列车高速运行导致隧道内阻力变化及热效应的大小,受到列车隧道系统阻塞比的影响比车速的影响更大,列车空调放热是隧道内温度升高的主要因素,壁面摩擦等因素也会导致隧道内热量的进一步增加,行车密度对温度的影响将是非常关键的.对于高阻塞比的列车隧道系统,隧道中部残留的热量还较多,热量积聚效应不容忽视.  相似文献   

12.
为了研究隧道交会气动载荷对高速列车横向振动的影响,建立了某型号8节编组高速列车数值仿真计算模型。基于三维、非定常、可压缩的Navier-Stokes方程以及k-ε两方程湍流模型和滑移网格技术,数值模拟了高速列车在隧道内交会时的气动特性。通过建立8节编组的车辆系统动力学模型,研究了列车交会气动载荷对列车车辆系统动力学响应(列车的安全性和平稳性)的影响,研究结果表明:隧道交会气动载荷对列车的动力学性能的影响非常明显;当列车在隧道交会时,列车的横向振动加剧,列车的安全性和平稳性明显降低,其中头车、中间车和尾车的轮重减载率增加幅值分别为:14.4%、13.3%和9.1%;横向平稳性指标增加幅值分别为:10.66%、12.40%和5.22%。  相似文献   

13.
高速列车通过隧道产生的压力波带来了司乘人员的耳感舒适性问题。随着运行速度的提升,耳感舒适度问题日益严重。文中以京沪高速铁路隧道参数为研究背景,基于一维可压缩非定常不等熵流动模型的特征线计算方法,采用时间常数模型,结合国内舒适度标准和UIC标准,研究400km/h列车头尾车和中间车的整车时间常数动态气密性阈值的变化特性,并分析了隧道长度、列车速度和编组等参数对整车时间常数动态气密阈值的影响规律;研究结果表明:列车速度、隧道长度和动态时间常数气密值密切相关;单列车以400km/h通过隧道且满足国内800Pa/3s标准时,高速列车头尾车时间常数动态气密阈值应大于12s,中间车时间常数动态气密阈值应大于11s;满足UIC标准时,头尾车时间常数动态气密阈值大于24s,中间车时间常数动态气密阈值大于20s;两列车交会且满足国内800Pa/3s标准时,高速列车头尾车时间常数动态气密值应大于23s,中间车时间常数动态气密阈值大于22s;满足UIC标准时,头尾车时间常数动态气密阈值大于45s,中间车时间常数动态气密阈值大于42s。  相似文献   

14.
高速铁路隧道压力波动主要影响参数研究   总被引:2,自引:1,他引:1  
利用所研制的预测列车进入隧道时引起的列车和隧道环状空间的压力波动软件,计算了流线型列车及隧道主要参数对环状空间3s内最大压力变化的影响。结果显示所有影响因素中,速度和阻塞比对压力变化的影响最大。得出单线隧道单列列车通过时,在速度不大于250km·h-1,3s内最大压力变化与列车速度的平方成正比,但速度超过250km·h-1时,压力对速度的依赖关系有所缓和。分析认为在3s内最大压力变化随阻塞比非线性地变化。研究表明列车长度对头部压力变化的影响较小,但对尾部压力变化有明显影响;隧道内会车压力波在3s内变化量随会车位置不同有明显区别,两列车在隧道长三分之一处交会最为不利。  相似文献   

15.
建立了某高速列车4辆编组的列车空气动力学交会模型,模拟列车交会时表面空气压力波的变化,并将仿真分析结果与实车试验结果数据进行了对比分析。分析结果表明,仿真模型能够基本模拟列车实车运行时的压力波变化,仿真分析结果可以为新车型设计与改进提供可靠的参考数据。  相似文献   

16.
高速列车隧道内等速会车时气动作用力的数值模拟   总被引:1,自引:0,他引:1  
基于三维非稳态黏性Navier-Storkes方程及k-ε两方程紊流模型,利用包含移动网格技术的计算流体动力学方法,对高速列车在长隧道内等速交会过程进行动态数值模拟,模拟2列相同外型的列车以4种车速交会时的流场,分析会车过程中交会列车所受气动侧向力、侧翻力矩及偏转力矩的变化情况,初步得到隧道内会车时气动作用力的变化规律。计算结果表明:隧道内列车交会过程使列车受到较大的侧向力、侧翻力矩和偏转力矩;每节车厢侧向力和侧翻力矩方向经历2次变化;偏转力矩方向经历4次变化。气动力与力矩的大小是车速的二次方函数。气动力及气动力矩的变化率与车速的三次方成正比。  相似文献   

17.
为研究高速列车过隧道时对接触网系统安全性的影响,采用数值模拟的方法,利用滑移网格技术,对不同编组的高速列车以350 km/h的速度分别通过单线隧道和双线隧道的过程进行仿真,通过监测吊柱位置处的气流速度和气体压力,得到隧道内活塞风特性;基于气动特性仿真结果,对接触线风振响应进行模拟仿真,得到隧道内接触线位移偏量范围。结果表明,列车编组越多,隧道断面越小,列车车速越大,形成的列车风速度越大,气动特性越显著;列车进入隧道入口瞬间,接触线有最大正向位移偏量为2.92 mm。  相似文献   

18.
根据隧道压力波传播和叠加理论的分析,分别在两条350km/h等级线路上进行了多个速度级的列车隧道通过和隧道交会的实车试验。结果表明:实车监测压力波特性与一维压力波传播与叠加理论分析相一致,两列列车的车外正压与正压和负压与负压均充分叠加;速度为300km/h时列车隧道交会最大压力变化比是隧道通过的1.98倍,隧道长度越接近最不利长度时压力波叠加更充分。  相似文献   

19.
列车气动性能评估参数研究   总被引:9,自引:1,他引:8  
列车外形对列车气动性能起决定性作用。以往常采用长度法定义的长细比(长度长细比)来评估不同头部外形气动性能,这种方法在车身横截面积相同的情况下,致使长度相同外形不同的流线型车头具有相同的长细比而无法进行比较。针对这一情况,对不同外形系列的流线型列车开展了风洞实验研究,在此基础上提出了一组新的列车气动性能评估参数-整体长细比和宽细比。整体长细比考虑了车头流线型部分水平面投影形状(水平长细比)和纵向对称面投影形状(纵向长细比)对空气阻力的影响,宽细比则综合了长度长细比和车头流线型部分水平面投影形状对列车交会压力波的影响。研究结果表明该组评估参数能较好地反映出端车流线型外形对列车气动阻力和交会空气压力波幅值的影响。  相似文献   

20.
列车交会空气压力波研究及应用   总被引:9,自引:2,他引:7  
列车交会空气压力波是高速轨道交通特有的空气动力学问题,它对高速轨道运输行车安全、旅客舒适度均产生重大影响。讨论了列车交会空气压力波数值计算方法、动模型及在线实车试验技术,论述了非对称滑移网格技术。根据对我国提速,200km/h速度等级及其以上高速列车进行计算、试验和理论分析,建立了列车交会压力波与运行速度、复线间距、车体宽度、附面层、外形以及编组方式等之间的关系,讨论了列车交会行车安全评估方法,提出了我国既有线上各种列车车体和车窗结构承受瞬态交会压力冲击安全运行极限值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号