首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a method for estimating the vehicle side slip angle, which is considered as a significant signal in determining the vehicle stability region in vehicle stability control systems. The proposed method combines the model-based method and kinematics-based method. Side forces of the front and rear axles are provided as a weighted sum of directly calculated values from a lateral acceleration sensor and a yaw rate sensor and from a tire model according to the nonlinear factor, which is defined to identify the degree of nonlinearity of the vehicle state. Then, the side forces are fed to the extended Kalman filter, which is designed based on the single-track vehicle model associated with a tire model. The cornering stiffness identifier is introduced to compensate for tire force nonlinearities. A fuzzy-logic procedure is implemented to determine the nonlinear factor from the input variables: yaw rate deviation from the reference value and lateral acceleration. The proposed observer is compared with a model-based method and kinematics-based method. An 8 DOF vehicle model and Dugoff tire model are employed to simulate the vehicle state in MATLAB/SIMULINK. The simulation results shows that the proposed method is more accurate than the model-based method and kinematics-based method when the vehicle is subjected to severe maneuvers under different road conditions.  相似文献   

2.
车轮外倾角与车轮前束值是车轮定位中的两个重要参数,车轮前束是为了抵消车轮外倾产生的侧滑不利影响,因此前束值要与车轮的外倾角有合理的匹配。综合考虑车辆的结构参数和轮胎特性,基于车轮的侧滑机理,推导出车轮外倾角与前束值的合理匹配关系模型,用试验结果验证了模型的正确性,为在车辆的设计开发过程中,合理的确定车轮的外倾角与前束值提供理论参考。  相似文献   

3.
A newly developed tire model for the Overturning Moment (OTM) characteristics and the analysis of the influence of OTM on vehicle rollover behavior are presented. The new OTM model was developed based on the so-called Magic Formula tire model. The concept of the new model involves identifying the difference between the simple model and the measurements to the newly defined functions. It was seen that the new model agrees very well with the measured data over a wide range of tire vertical loads, slip angles and camber angles. The influence of tire OTM on the vehicle rollover behavior was also investigated by using a full vehicle simulation in which a rather large steering angle was input. The results obtained from the vehicle simulation with three different tire models (model without OTM, simple model and new model) were compared with the experimental results. It was found that the calculated result obtained with the new OTM model agreed best with the experiment.  相似文献   

4.
This article begins with a brief review of the traditional concept of lateral relaxation length. The review illustrates that this concept yields a useful approximation which can be used with semi-empirical tire models which assume lateral forces are a function of steady-state slip angles. The article then presents an analogous derivation for longitudinal slip. Like its lateral counterpart, the derivation yields an approximation for transient longitudinal slip which can be used with tire models which assume longitudinal forces are a function of steady-state longitudinal slip. It is shown that, like the relaxation-length-based lateral slip angle, this formulation for longitudinal slip yields the ability to compute shear forces at the tire/road interface for either high or low speed applications, a necessary feature of simulations which support human in the loop driving simulation. Like traditional kinematically-based longitudinal slip, the transient formulation presented here is coupled with the wheel spin equation, and it shares the characteristic that it is very stiff compared to the equations of vehicle motion. This characteristic is a challenge impeding the real-time calculations required for driving simulation. The paper shows that local linearization of the wheel spin equations coupled with analytical solutions of the transient longitudinal slip formulation provide the basis for both insight into the longitudinal dynamics of the tire and for integrating the model in real-time.  相似文献   

5.
A newly developed tire model for the Overturning Moment (OTM) characteristics and the analysis of the influence of OTM on vehicle rollover behavior are presented. The new OTM model was developed based on the so-called Magic Formula tire model. The concept of the new model involves identifying the difference between the simple model and the measurements to the newly defined functions. It was seen that the new model agrees very well with the measured data over a wide range of tire vertical loads, slip angles and camber angles. The influence of tire OTM on the vehicle rollover behavior was also investigated by using a full vehicle simulation in which a rather large steering angle was input. The results obtained from the vehicle simulation with three different tire models (model without OTM, simple model and new model) were compared with the experimental results. It was found that the calculated result obtained with the new OTM model agreed best with the experiment.  相似文献   

6.
SUMMARY

This article begins with a brief review of the traditional concept of lateral relaxation length. The review illustrates that this concept yields a useful approximation which can be used with semi-empirical tire models which assume lateral forces are a function of steady-state slip angles. The article then presents an analogous derivation for longitudinal slip. Like its lateral counterpart, the derivation yields an approximation for transient longitudinal slip which can be used with tire models which assume longitudinal forces are a function of steady-state longitudinal slip. It is shown that, like the relaxation-length-based lateral slip angle, this formulation for longitudinal slip yields the ability to compute shear forces at the tire/road interface for either high or low speed applications, a necessary feature of simulations which support human in the loop driving simulation. Like traditional kinematically-based longitudinal slip, the transient formulation presented here is coupled with the wheel spin equation, and it shares the characteristic that it is very stiff compared to the equations of vehicle motion. This characteristic is a challenge impeding the real-time calculations required for driving simulation. The paper shows that local linearization of the wheel spin equations coupled with analytical solutions of the transient longitudinal slip formulation provide the basis for both insight into the longitudinal dynamics of the tire and for integrating the model in real-time.  相似文献   

7.
In a dynamic vehicle simulation, longitudinal tire force is primarily based on the longitudinal slip (ratio). In the longitudinal slip formula, state variables are used in the denominator. This causes a divergence problem for numerical simulations of vehicle dynamics. To avoid this numerical singularity, a differential slip calculation method was developed for use in dynamic vehicle simulations. However, this method also causes a singularity when the wheel velocity approaches zero in a pure slip state, such as during sudden braking. In this paper, a new longitudinal slip calculation method, which can overcome singularities in all velocity conditions, is proposed. For this purpose, the Taylor series is adapted to the slip formula and the idea of virtual wheel rotation stiffness is introduced for the development of the slip equation. The physical phenomenon at the zero slip state is analyzed. Finally, the proposed slip formula is used to solve the numerical singularity problem, and the non-singular slip (NSS) calculation method is proposed. The proposed NSS method is applied to tire model performance test (TMPT) simulations to validate its performance.  相似文献   

8.
An integrated control system of active rear wheel steering (4WS) and direct yaw moment control (DYC) is presented in this paper. Because of the tire nonlinearity that is mainly due to the saturation of cornering forces, vehicle handling performance is improved but limited to a certain extent only by steering control. Direct yaw moment control using braking and/or driving forces is effective not only in linear but also nonlinear ranges of tire friction circle. The proposed control system is a model matching controller which makes the vehicle follow the desired dynamic model by the state feedback of both yaw rate and side slip angle. Various computer simulations are carried out and show that vehicle handling performance is much improved by the integrated control system.  相似文献   

9.
SUMMARY

An integrated control system of active rear wheel steering (4WS) and direct yaw moment control (DYC) is presented in this paper. Because of the tire nonlinearity that is mainly due to the saturation of cornering forces, vehicle handling performance is improved but limited to a certain extent only by steering control. Direct yaw moment control using braking and/or driving forces is effective not only in linear but also nonlinear ranges of tire friction circle. The proposed control system is a model matching controller which makes the vehicle follow the desired dynamic model by the state feedback of both yaw rate and side slip angle. Various computer simulations are carried out and show that vehicle handling performance is much improved by the integrated control system.  相似文献   

10.
This paper presents a novel nonlinear dynamic model of a multi-axle steering vehicle to estimate the lateral wear amount of tires. Firstly, a 3DOF nonlinear vehicle dynamic model is developed, including dynamic models of the hydropneumatic suspension, tire, steering system and toe angle. The tire lateral wear model is then built and integrated into the developed vehicle model. Based on the comparison of experimental and simulation results, the nonlinear model is proved to be better than a linear model for the tire wear calculation. In addition, the effects of different initial toe angles on tire wear are analyzed. As simulation results shown, the impact of the dynamic toe angle on the tire wear is significant. The tire wear amount will be much larger than that caused by normal wear if the initial toe angle increases to 1° - 1.5°. The results also suggest that the proposed nonlinear model is of great importance in the design and optimazation of vehicle parameters in order to reduce the tire wear.  相似文献   

11.
基于扩展卡尔曼滤波的汽车质心侧偏角估计   总被引:4,自引:0,他引:4  
基于二自由度汽车动力学模型和轮胎模型,运用扩展卡尔曼滤波方法建立了汽车质心侧偏角估计器.利用汽车动力学仿真平台,通过仿真对比了线性轮胎模型和非线性轮胎模型的质心侧偏角估计结果.仿真结果表明,轮胎模型对于质心侧偏角估计精度至关重要,而采用非线性轮胎模型能显著提高质心侧偏角估计精度,估计结果能满足ESC控制的要求.  相似文献   

12.
In this paper the vertical load-deflection behaviour of a pneumatic tire has been studied theoretically. A simple mathematical model which is especially suitable for a tire applied by a side force has been developed. Researches carried out in the past show that the tire vertical stiffness varies neither proportionally nor symmetrically as the slip angle of a cambered tire is changed. This effect can be explained by the theory developed here.

The model predictions have been verified using experimental results obtained from literature. Moreover, tire cornering characteristic curves obtained under different test conditions, i. e. during increasing of the slip angle the vertical load is kept constant or not, have been discussed through a simulation example. This study shows that the characteristic curves vary rather considerably under the different conditions.  相似文献   

13.
A mathematical model of a two-dimensional contact patch of pneumatic tires rolling over a rigid flat road surface at arbitrary slip and camber angles has been developed. The model is simple in concept, contains few parameters and is applicable to any tire simulation models. In addition to tire geometric parameters and vertical deflection, the carcass camber angle is introduced in the model. This angle is alone responsible for the asymmetric shape of the tire contact patch when the tire undergoes a lateral force. The computed contact patches agree well with the measured patches of an automotive tire at different slip and camber angles. Lastly, the influence of the contact patch geometry on the tire cornering and aligning properties has been discussed through a computational example. It has been shown that the effect of tire contact patch geometry on the steady state behavior is rather remarkable.  相似文献   

14.
This paper proposes an adaptive yaw rate feedback control system for a four-wheel-steering (4WS) vehicle which involves a tire/road friction coefficient estimator. The adaptive 4WS system has been developed so that the vehicle possesses desirable lateral characteristics even on slippery roads and in critical driving situations. The friction coefficient is estimated on real time from the yaw rate response of the controlled vehicle with the least squares. The control system adopts a two degree of freedom structure which consists of a feedforward compensator and a feedback control subsystem. The feedforward compensator is determined with the estimated friction coefficient to minimize the steady-state and transient vehicle slip angle in spite of changes in tire/road conditions. The feedback subsystem adopts the Internal Model Control (IMC) structure in order to compensate for nonlinearities and to realize robustness against modelling and estimation errors.  相似文献   

15.
建立了某四轮汽车9自由度车辆模型和轮胎动力模型,并提出了一种基于侧向力利用系数的差动制动、主动转向切换控制策略。模拟了汽车以车速24.5m/s行驶时的一个紧急避让情况,研究了无控制模式、差动制动控制模式、联合控制模式下的车辆横摆角速度、质心侧偏角、质心侧向位移的变化。结果表明,所提出的差动制动联合主动转向技术的控制策略可以满足变路面下车辆稳定性控制要求。  相似文献   

16.
分析了各种常用轮胎模型的特点与应用范围,根据汽车操纵动力学研究的需求,在Matlab环境下运用魔术公式建立了轮胎动力学模型,并对汽车轮胎力与纵向滑移率,纵向力、侧向力及回正力矩与纵向滑移率、侧偏角、外倾角、垂直载荷的关系等轮胎特性进行了仿真分析,实验结果表明,魔术公式轮胎动力学模型可以较好地模拟轮胎的动力学特性,适用于车辆动力学研究领域。  相似文献   

17.
轮胎附着极限下差动制动对汽车横摆力矩的影响   总被引:20,自引:3,他引:20  
郭孔辉  丁海涛 《汽车工程》2002,24(2):101-104
本文以纵滑-侧偏联合工况的稳态轮胎模型为基础,分析了汽车极限转向条件下制动作用于不同车轮时对汽车横摆力矩的影响,并通过整车动力学仿真进行了验证,研究结果为利用差动制动控制提高汽车的高速操纵稳定性提供了动力学依据。  相似文献   

18.
As for the tire analysis, lateral tire force is a fundamental factor that describes the stability of vehicle handling. Attempts to analyze the vehicle stability have been made based on various objective test methods and some specific factors such as yaw, lateral acceleration and roll angle. However, the problem to identify which axle is lack of the tire grip at a certain situation still remains. Since indoor tire force measurement system cannot represent a real road and vehicle conditions, tire force measurement through a real vehicle test is inevitable. Due to the high price of the tire force measurement device, tire force estimator can be an alternative toward cost reduction and device failure. In this paper, nonlinear planar full car model combined with tire model is proposed. Then, using discrete-time extended Kalman-Bucy filter (EKBF), individual tire lateral force are estimated with modified relaxation length model.  相似文献   

19.
大侧偏角下侧偏松弛长度特性的研究   总被引:1,自引:0,他引:1  
本文在稳态指数统一模型和一阶线性微分方程的基础上,研究了大侧偏角下动态过程中侧偏松弛长度的特性。侧偏松弛长度是由轮胎的侧向弹性决定的。在大侧偏角下,侧偏松弛长度不再是一个常数,而是随着侧向有效滑移率的改变而改变,而且它们之间呈现非线性特性。深入了解侧偏松弛长度的特性对研究轮胎动态特性和建立轮胎动态模型具有重要的作用。  相似文献   

20.
为了提高汽车在突发爆胎事故时的稳定性,对爆胎汽车主动制动控制策略进行了研究。根据车轮爆胎时间与压力变化的关系,在UniTire模型基础上建立了爆胎模型;根据电子稳定性控制系统中横摆角速度及质心侧偏角对汽车稳定性影响的关系,基于二自由度汽车动力学模型,通过计算汽车横摆角速度及质心侧偏角实际值与理想值的偏差,并基于线性二次型调节器最优控制方法决策出最优附加横摆力矩,从而修正爆胎后汽车的运动状态。最后通过计算机仿真对所提策略的有效性进行了验证。结果表明:主动制动控制策略可以保证爆胎过程中汽车的行驶稳定性和安全性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号