首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
旋转调制技术通过转位机构带动惯性测量单元按照设计好的转位方案旋转,将器件误差对导航精度的影响调制平均掉,从而提高系统长航时导航精度。该技术在国外船用领域被广泛应用,也是惯性技术领域的热点研究方向之一。本文研究旋转调制技术的本质,即旋转式惯导系统的误差传播特性,从理论上分析旋转式惯导系统单通道误差传播机理,研究器件误差经调制后的传播形式,阐释旋转调制技术提高系统精度的原因。通过仿真验证了惯性器件常值误差经旋转调制后消弱了对导航精度的影响程度。  相似文献   

2.
旋转调制式捷联惯导系统初始对准方案研究   总被引:1,自引:0,他引:1  
初始对准技术是惯性导航的关键技术之一,其精度将直接影响导航精度。旋转调制式捷联惯导系统在一定的旋转方案下虽然可以将惯性组件的误差调制掉从而提高系统导航精度,但其初始对准的误差则不受调制,所以有必要对旋转调制式惯导系统的初始对准进行深入研究,确定适合旋转式捷联系统使用的对准技术和方案以进一步提高系统精度。文章对可应用于旋转调制式捷联惯导系统的三种对准方案做了研究分析并进行了仿真。结果显示,二位置对准方案可显著提高系统变量的可观测度,连续旋转方案对准精度最高,收敛速度最快,效果最好。  相似文献   

3.
研制高精度船用激光陀螺捷联惯导系统是惯性技术领域的重要发展方向之一,本文从旋转惯导系统与无旋转惯导系统误差方程的区别出发,详细讨论了双轴旋转惯导系统中激光陀螺标度因数误差的调制机理,仿真分析了对称性标度因数误差和非对称性标度因数误差在典型双轴旋转调制方案下的传播特性,为激光陀螺双轴旋转惯导系统的设计提供理论参考。  相似文献   

4.
提高惯导系统对于惯性器件误差负面影响的抑制能力,对于改善系统的导航精度具有重要意义.本文对惯导系统误差方程进行分析,重点讨论对称位置上惯性器件误差的积累效果,系统地研究了单轴旋转调制对捷联惯性导航系统惯性器件误差的自动补偿机理,详细分析了单轴旋转对惯性器件常值误差、标度因数误差的抑制情况.对单轴旋转调制方案进行仿真,验证了理论分析的正确性.  相似文献   

5.
《舰船科学技术》2015,(12):123-127
从理论上分析惯性器件常值偏置误差被完全调制和标度因数误差、安装误差被最大程度调制的旋转规律,提出双轴转位方案的设计原则。在此基础上设计了一种八次序转位方案,对该方案下误差调制效果进行分析。最后,利用高精度激光陀螺惯导系统和双轴转台搭建半实物仿真系统,对提出的双轴转位方案进行长时间静态导航精度的验证,证明双轴旋转误差调制理论分析的正确性和双轴转位方案设计的合理性。  相似文献   

6.
采用旋转调制技术可以抑制惯导系统误差随时间发散的趋势,然而,随机误差是限制旋转惯导系统精度继续提高的因素之一。对于高精度应用领域,陀螺角度随机游走误差也是惯导系统设计时考虑的因素。本文从对准和导航2个过程出发,研究陀螺角度随机游走误差对惯导系统的影响,结合激光陀螺实测数据进行艾伦方差分析,并利用实测结果进行仿真验证。结果表明,陀螺角度随机游走引起惯导系统振荡误差,0.0005°/√h的角度随机游走导航7天引起的位置误差大约1.3 nm。  相似文献   

7.
《舰船科学技术》2013,(12):114-120
本文研究旋转惯导系统设计中的一些重要问题,包括误差调制机理、误差传播特性和旋转方案设计。考虑惯性器件的一些典型误差,分析旋转式惯导系统的误差传播特性,并验证旋转调制下误差的影响效果。通过分析,提出双轴旋转方案合理设计的条件,设计出一种基于64次序的双轴旋转方案以实现平均掉惯性器件所有常值误差的目标。基于该旋转方案,仿真出惯性测量单元主要误差项的调制形式,通过一个旋转周期的积分,得到这些误差引起的累积速度或角度误差的调制形式,进一步验证了旋转调制对误差的调制效果。最后,通过对旋转调制下惯导系统长时间导航误差的仿真,验证了所设计旋转方案的有效性和旋转调制的优越性。  相似文献   

8.
激光惯导旋转调制技术是一种自校正方法,其补偿手段是在不依赖外部导航信息的前提下,自动补偿陀螺漂移和加速度计零偏引起的系统导航误差.该旋转调制技术已经在国外舰船型号上成功应用,通过对陀螺和加速度计常值漂移、安装误差、标度因数误差等因素在单轴旋转下的调制情况进行了研究.系统设计中,通过计算机仿真分析了系统在旋转和非旋转情况下各误差因素对系统定位误差的影响.仿真表明,采用单轴旋转调制技术能够抑制长期的定位误差发散,在角运动状态下旋转系统能比无旋转系统保持更好的姿态精度.  相似文献   

9.
对于高精度激光陀螺旋转惯导系统,大部分惯性器件误差都能够通过惯性测量单元(IMU)旋转而调制掉,内杆臂误差不仅不能够被调制掉,反而因为IMU旋转将误差引入到系统对准和导航过程中。基于此,本文对内杆臂误差进行分析与建模,推导内杆臂误差与导航速度误差之间的数学表达式,通过分析确定内杆臂长度和振动频率是影响内杆臂误差的2个因素,并提出基于内杆臂长度的误差补偿方法。最后,通过试验对内杆臂误差模型和补偿方法进行了验证。  相似文献   

10.
舰用高精度激光陀螺惯导内杆臂误差分析及补偿方法研究   总被引:1,自引:0,他引:1  
对于高精度激光陀螺旋转惯导系统,大部分惯性器件误差都能够通过惯性测量单元( IMU)旋转而调制掉,内杆臂误差不仅不能够被调制掉,反而因为 IMU旋转将误差引入到系统对准和导航过程中。基于此,本文对内杆臂误差进行分析与建模,推导内杆臂误差与导航速度误差之间的数学表达式,通过分析确定内杆臂长度和振动频率是影响内杆臂误差的2个因素,并提出基于内杆臂长度的误差补偿方法。最后,通过试验对内杆臂误差模型和补偿方法进行了验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号