共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper examines the dynamic user equilibrium of the morning commute problem in the presence of ridesharing program. Commuters simultaneously choose departure time from home and commute mode among three roles: solo driver, ridesharing driver, and ridesharing rider. Considering the congestion evolution over time, we propose a time-varying compensation scheme to maintain a positive ridesharing ridership at user equilibrium. To match the demand and the supply of ridesharing service over time, the compensation scheme should be set according to the inconvenience cost functions and the out-of-pocket cost functions. When the price charged per time unit is higher than the inconvenience cost per time unit perceived by the ridesharing drivers, the ridesharing participants will travel at the center of peak hours and solo drivers will commute at the two tails. Within the feasible region with positive ridership, the ridesharing program can reduce the congestion and all the commuters will be better off. To support system optimum (SO), we derive a time-varying toll combined with a flat ridesharing price from eliminating queuing delay. Under SO toll, the ridesharing program can attract more participants and have an enlarged feasible region. This reveals that the commuters are more tolerant to the inconvenience caused by sharing a ride at SO because of the lower travel time. Compared with no-toll equilibrium, both overall congestion and individual travel cost are further reduced at SO. 相似文献
2.
Spatial transferability has been recognized as a useful validation test for travel demand models. To date, however, transferability of activity-based models has not been frequently assessed. This paper assesses the spatial transferability of an activity-based model, TASHA (Travel Activity Scheduler for Household Agents), which has been developed for the Greater Toronto Area (GTA), Canada. TASHA has been transferred to the context of the Island of Montreal, Canada using the 2003 Origin–Destination (O–D) travel survey and the 2001 Canadian Census. It generates daily schedules of activities (individual and joint) for each individual in this region. The modelled activity attributes (frequency, start time, duration and distance) from TASHA and observed attributes from the 2003 O–D travel survey are compared for five different activities (i.e. work, school, shopping, other, and return to home). At the aggregate level, TASHA provides quite reasonable outcomes (in some cases – better results than for the Toronto Area) for all four attributes for work, school and return to home activities with few exceptions (for instance, school start time). The model outcomes are also promising for shopping frequency and start times; however, TASHA provides larger differences for average shopping durations and distances. Only the forecasts for all four attributes for the ‘other’ activity type differ greatly with the observed attributes for the Montreal Island. These large differences most likely indicate the differences in behaviour between the Montreal Island and the Toronto Area. In general, we conclude that re-estimation of model parameters and the use of local activity attribute distributions (frequency, start time and duration) is a desirable step in the transfer of the TASHA model from one context to another. 相似文献
3.
Logit模型是一种较为成熟的旅客运输分担率分析方法,它在旅客运输领领域有着广泛的应用。参照绿色经济的定义,首先,本文分析各运输方式的安全性效用、经济性效用、时效性效用、准时性效用、方便性效用、舒适性效用和绿色性效用7个服务特征属性并建立广义效用函数;其次,研究高速铁路客流分担率模型;再次,运用相关数据及最大似然估计法来确定模型的参数;最后,以武汉~广州间各运输方式的客流分担率来研究该模型的应用。 相似文献
4.
Jee E. Kang W.W. Recker 《Transportation Research Part D: Transport and Environment》2009,14(8):541-556
This paper assesses the potential energy profile impacts of plug-in hybrid electric vehicles and estimates gasoline and electricity demand impacts for California of their adoption. The results are based on simulations replicating vehicle usage patterns reported in 1-day activity and travel diaries based on the 2000–2001 California Statewide Household Travel Survey. Four charging scenarios are examined. We find that circuit upgrades to 240 V not only bring faster charging times but also reduce charging time differences between PHEV20 and PHEV60; home charging can potentially service 40–50% of travel distances with electric power for PHEV20 and 70–80% for PHEV60; equipping public parking spaces with charging facilities, can potentially convert 60–70% of mileage from fuel to electricity for PHEV20, and 80–90% for PHEV60; and afternoons are found to be exposed to a higher level of emissions. 相似文献
5.
In this paper, we investigate the influence of scalability on the accuracy of different synthetic populations using both fitting and generation-based approaches. Most activity-based models need a base-year synthetic population of agents with various attributes. However, when several attributes need to be synthesized, the accuracy of the synthetic population may decrease due to the mixed effects of scalability and dimensionality. We analyze two population synthesis methods for different levels of scalability, i.e. two to five attributes and different sample sizes – 10%, 25% and 50%. Results reveal that the simulation-based approach is more stable than Iterative Proportional Fitting (IPF) when the number of attributes increases. However, IPF is less sensitive to changes in sample size when compared to the simulation-based approach. We also demonstrate the importance of choosing the appropriate metric to validate the synthetic populations as the trends in terms of RMSE/MAE are different from those of SRMSE. 相似文献
6.
Takamasa Iryo 《Transportation Research Part B: Methodological》2011,45(6):867-879
This study provides an example in which the dynamic user equilibrium (DUE) assignment of a congested road network with bottlenecks is non-unique. In previous studies, the uniqueness of DUE assignments with the bottleneck model has been shown in limited cases such as single-origin and single-destination networks. Consequently, it is still an important issue whether or not uniqueness is a general property of DUE assignments. The present study describes a network in which multiple patterns of link travel time are found, thus providing a negative answer to this question. The network has a loopy structure with multiple bottlenecks and multiple origin-destination (OD) pairs. Given a certain demand pattern of departure times for vehicles leaving their origins, a non-convex set of equilibria with a non-unique pattern of link travel times is shown to exist. 相似文献
7.
This study models the joint evolution (over calendar time) of travelers’ departure time and mode choices, and the resulting traffic dynamics in a bi-modal transportation system. Specifically, we consider that, when adjusting their departure time and mode choices, travelers can learn from their past travel experiences as well as the traffic forecasts offered by the smart transport information provider/agency. At the same time, the transport agency can learn from historical data in updating traffic forecast from day to day. In other words, this study explicitly models and analyzes the dynamic interactions between transport users and traffic information provider. Besides, the impact of user inertia is taken into account in modeling the traffic dynamics. When exploring the convergence of the proposed model to the dynamic bi-modal commuting equilibrium, we find that appropriate traffic forecast can help the system converge to the user equilibrium. It is also found that user inertia might slow down the convergence speed of the day-to-day evolution model. Extensive sensitivity analysis is conducted to account for the impacts of inaccurate parameters adopted by the transport agency. 相似文献
8.
In this paper, we propose an activity model under time and budget constraints to simultaneously predict the allocation of time and money to out-of-home leisure activities. The proposed framework considers the activity episode level, given that the activity is scheduled. Thus, the model considers the decision of the quantities for duration and expenditure spent during the activity. We use a flexible utility function and show how the simultaneous equations can be estimated by using structural equations model (SEM) estimation techniques to handle the endogeneity problem of time and expenditure. The estimation results are based on a large national leisure diary data set collected in 2008 in the Netherlands, which provides detailed information about time and money spent as well as timing and location attributes of the activities. The analysis reveals that socio-demographics, travel party, timing and location variables influence the duration and expenditure of activity episodes. It shows that various socio-demographic groups display different preferences in terms of the time and money spent on activities. The results also indicate substitution relationships between spending more time and money for various activity categories. Thus it is concluded that the analysis provides useful results for a better understanding of combined time and money allocation decisions for leisure activities. 相似文献
9.
In recent decades, activity-based transportation models have gained growing attention, due to their strong foundation in behavioral theory and ability to model the response of individuals to travel demand management policies. Hence, researchers have become increasingly interested in analyzing and predicting individuals’ decisions about activity participation. This paper investigates the reliability and uncertainty of computational process activity-based models. The design of the scheduling process model is experimented with by introducing an alternative decision sequence. The results provide additional information to better understand the process model’s reliability and behavior. Furthermore, the findings show that the current sequence of decision steps in the process model in ALBATROSS achieves satisfactory work activity schedules. Finally, the study concludes that using a decision tree model achieves a better performance than using diverse data mining approaches. 相似文献
10.
An approach based on cell transmission model (CTM) is proposed to estimate the impact of variable free-flow speeds (FFS) on the performance of a freeway system. Based on the basic CTM, four typical freeway control strategies consisting of non control, local ramp metering, coordinated ramp metering and global control are first formulated. Then the method of adjusting model parameters to the changed free-flow speeds is presented. Among the adjustments, an experimental function based on Fan and Seibold (2014) is proposed to change the jam density. Several useful measures are defined to estimate and compare the performances of different freeways. The following three main observations are obtained from numerical experiments. (a) With the gradually increasing FFS, the throughput of freeway will increase at the beginning and then change to decrease. (b) With the increasing FFS, the average delay of vehicles will decrease at the beginning and then change to increase. (c) A series of free-flow speeds associate with the best performance of freeway. These observations are theoretically analyzed through investigating the location and capacity of bottleneck. Study shows that in general the actual bottleneck capacity will increase at the beginning and then change to decrease with the continually increasing FFS. In view of the positive correlation between traffic delay and bottleneck capacity, the theoretical analysis confirms the numerical observations. The findings of this study can deepen the understanding of freeway systems and help management agents adopt proper measures to improve the performance of the whole system. 相似文献
11.
This paper examines the design and efficiency of a highway use reservation system where commuters need reservations to access a highway facility at specific times. We show that, by accommodating reservation requests to the level that the highway capacity allows, traffic congestion can be relieved. Generally, a more differentiated design of the reservation system yields a higher reduction of travel cost and thus achieves a higher efficiency. The efficiency bound of the system is established. We also show that braking or tactical waiting behaviors of drivers would cause a loss of efficiency, which thus need be proactively accommodated. Given that user heterogeneity cause further loss of efficiency, we explore how two specific types of user heterogeneity affect the system efficiency. Auction-based reservation is then proposed to mitigate the efficiency loss. 相似文献
12.
This paper proposes a novel semi-analytical approach for solving the dynamic user equilibrium (DUE) of a bottleneck model with general heterogeneous users. The proposed approach makes use of the analytical solutions from the bottleneck analysis to create an equivalent assignment problem that admits closed-form commute cost functions. The equivalent problem is a static and asymmetric traffic assignment problem, which can be formulated as a variational inequality problem (VIP). This approach provides a new tool to analyze the properties of the bottleneck model with general heterogeneity, and to design efficient solution methods. In particular, the existence and uniqueness of the DUE solution can be established using the P-property of the Jacobian matrix. Our numerical experiments show that a simple decomposition algorithm is able to quickly solve the equivalent VIP to high precision. The proposed VIP formation is also extended to address simultaneous departure time and route choice in a single O–D origin-destination network with multiple parallel routes. 相似文献
13.
Yang LiuYu Nie 《Transportation Research Part B: Methodological》2011,45(4):619-642
This paper extends the bottleneck model to study congestion behavior of morning commute and its implications to transportation economics. The proposed model considers simultaneous route and departure time choices of heterogenous users who are distinguished by their valuation of travel time and punctual arrival. Moreover, two dynamic system optima are considered: one minimizes system cost in the unit of monetary value (i.e., the conventional system optimum, or SO) and the other minimizes system cost in the unit of travel time (i.e., the time-based SO, or TSO). Analytical solutions of no-toll equilibrium, SO and TSO are provided and the welfare effects of the corresponding dynamic congestion pricing options are examined, with and without route choice. The analyses suggest that TSO provides a Pareto-improving solution to the social inequity issue associated with SO. Although a TSO toll is generally discriminatory, anonymous TSO tolls do exist under certain circumstances. Unlike in the case with homogenous users, an SO toll generally alters users’ route choices by tolling the poorer users off the more desirable road, which worsens social inequity. Numerical examples are presented to verify analytical results. 相似文献
14.
The discussion of whether, and to what extent, telecommuting can curb congestion in urban areas has spanned more than three decades. This study develops an integrated framework to provide the empirical evidence of the potential impacts of home-based telecommuting on travel behavior, network congestion, and air quality. In the first step, we estimate a telecommuting adoption model using a zero-inflated hierarchical ordered probit model to determine the factors associated with workers’ propensity to adopt telecommuting. Second, we implement the estimated model in the POLARIS activity-based framework to simulate the potential changes in workers’ activity-travel patterns and network congestion. Third, the MOVES mobile source emission simulator and Autonomie vehicle energy simulator are used to estimate the potential changes in vehicular emissions and fuel use in the network as a result of this policy. Different policy adoption scenarios are then tested in the proposed integrated platform. We found that compared to the current baseline situation where almost 12% of workers in Chicago region have flexible working time schedule, in the case when 50% of workers have flexible working time, telecommuting can reduce total daily vehicle miles traveled (VMT) and vehicle hours traveled (VHT) up to 0.69% and 2.09%, respectively. Considering the same comparison settings, this policy has the potential to reduce greenhouse gas and particulate matter emissions by up to 0.71% and 1.14%, respectively. In summary, our results endorse the fact that telecommuting policy has the potential to reduce network congestion and vehicular emissions specifically during rush hours. 相似文献
15.
Various transportation studies carried out in India, while estimating the travel demand, do not take into consideration the travel characteristics of different income groups. The conventional transportation travel demand model lacks the ability to address the travel needs of the urban poor. This paper explores the factors influencing the travel destinations of urban poor living in informal settlements and finds that travel times have a significant negative impact on the choice to travel and influences the choice of the destinations. The study also finds that the inhabitants of informal settlements are adversely affected by urban policies that displace them and rehabilitate them far from their employment opportunities and that the travel characteristics of low income households living in informal settlements are significantly different from higher income households. 相似文献
16.
This study is the first in the literature to model the joint equilibrium of departure time and parking location choices when commuters travel with autonomous vehicles (AVs). With AVs, walking from parking spaces to the work location is not needed. Instead, AVs will drop off the commuters at the workplace and then drive themselves to the parking spaces. In this context, the equilibrium departure/arrival profile is different from the literature with non-autonomous vehicles (non-AVs). Besides modeling the commuting equilibrium, this study further develops the first-best time-dependent congestion tolling scheme to achieve the system optimum. Also, a location-dependent parking pricing scheme is developed to replace the tolling scheme. Furthermore, this study discusses the optimal parking supply to minimize the total system cost (including both the travel cost and the social cost of parking supply) under either user equilibrium or system optimum traffic flow pattern. It is found that the optimal planning of parking can be different from the non-AV situation, since the vehicles can drive themselves to parking spaces that are further away from the city center and walking of commuters is avoided. This paper sheds light on future parking supply planning and traffic management. 相似文献
17.
Conventional bus service (with fixed routes and schedules) has lower average cost than flexible bus service (with demand-responsive routes) at high demand densities. At low demand densities flexible bus service has lower average costs and provides convenient door-to-door service. Bus size and operation type are related since larger buses have lower average cost per passenger at higher demand densities. The operation type and other decisions are jointly optimized here for a bus transit system connecting a major terminal to local regions. Conventional and flexible bus sizes, conventional bus route spacings, areas of service zones for flexible buses, headways, and fleet sizes are jointly optimized in multi-dimensional nonlinear mixed integer optimization problems. To solve them, we propose a hybrid approach, which combines analytic optimization with a Genetic Algorithm. Numerical analysis confirms that the proposed method provides near-optimal solutions and shows how the proposed Mixed Fleet Variable Type Bus Operation (MFV) can reduce total cost compared to alternative operations such as Single Fleet Conventional Bus (SFC), Single Fleet Flexible Bus (SFF), Mixed Fleet Conventional Bus (MFC) and Mixed Fleet Flexible Bus (MFF). With consistent system-wide bus sizes, capital costs are reduced by sharing fleets over times and over regions. The sensitivity of results to several important parameters is also explored. 相似文献
18.
Jason D. Lemp 《Transportation Research Part A: Policy and Practice》2012,46(3):602-613
Many discrete choice contexts in transportation deal with large choice sets, including destination, route, and vehicle choices. Model estimation with large numbers of alternatives remains computationally expensive. In the context of the multinomial logit (MNL) model, limiting the number of alternatives in estimation by simple random sampling (SRS) yields consistent parameter estimates, but estimator efficiency suffers. In the context of more general models, such as the mixed MNL, limiting the number of alternatives via SRS yields biased parameter estimates. In this paper, a new, strategic sampling scheme is introduced, which draws alternatives in proportion to updated choice-probability estimates. Since such probabilities are not known a priori, the first iteration uses SRS among all available alternatives. The sampling scheme is implemented here for a variety of simulated MNL and mixed-MNL data sets, with results suggesting that the new sampling scheme provides substantial efficiency benefits. Thanks to reductions in estimation error, parameter estimates are more accurate, on average. Moreover, in the mixed MNL case, where SRS produces biased estimates (due to violation of the independence of irrelevant alternatives property), the new sampling scheme appears to effectively eliminate such biases. Finally, it appears that only a single iteration of the new strategy (following the initialization step using SRS) is needed to deliver the strategy’s maximum efficiency gains. 相似文献
19.
This paper studies the optimal multi-step toll design problem for the bottleneck model with general user heterogeneity. The design model is formulated as a mathematical program with equilibrium constraints (MPEC), which is NP-hard due to non-convexity in both the objective function and the feasible set. An analytical method is proposed to solve the MPEC by decomposing it into smaller and easier quadratic programs, each corresponding to a unique departure order of different user classes. The quadratic programs are defined on a polyhedral set, which makes it easier to identify a local optimum. Importantly, each quadratic program is constrained by a set of linear feasibility cuts that define the presence of each user class in the arrival window. We prove that the proposed method ensures global optimality provided that each quadratic program can be solved globally. To obviate enumerating all departure orders, a heuristic method is developed to navigate through the solution space by using the multipliers associated with the feasibility cuts. Numerical experiments are conducted on several small examples to validate the proposed methodology. These experiments show that the proposed heuristic method is effective in finding near-optimal solutions within a relatively small number of iterations. 相似文献
20.
Using a Bergson–Samuelson welfare function, we outline a microeconomic interpretation of the effects of the non-linearity in the time/cost relationship for travellers in a congested transport network. It is demonstrated that a marginal cost traffic flow assignment following Wardrop's second principle, although it minimizes the total cost of a transport network, may reduce social welfare compared to the market equilibrium assignment based on Wardrop's first principle. A welfare-maximizing assignment model is presented and used to show that if the travellers' utility functions are linear, the assignment that maximizes social welfare will be the same as the assignment that minimizes total network cost, but if users' utility functions are non-linear (reflecting the traditional non-satiation and diminishing marginal utility axioms), the two assignments will be different. It is further shown that the effects of this non-linearity are such that a welfare-maximizing assignment will meet with less user resistance than a minimum total network cost assignment. 相似文献