首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
    
Channelized section spillover (CSS) is usually referred to the phenomenon of a traffic flow being blocked upstream and not being able to enter the downstream channelized section. CSS leads to extra delays, longer queues, and a biased detection of the flow rate. An estimation of CSS, including its occurrence and duration, is helpful for analysis of the state of traffic flow, as a basis for traffic evaluation and management. This has not been studied or reported in prior literature. A Bayesian model is developed through this research to estimate CSS, with its occurrence and duration formulated as a posterior distribution of given travel time and flow rate data. Basic properties of CSS are discussed initially, followed by a macroscopic model that explicitly models the CSS and encapsulates first-in-first-out (FIFO) behavior at an upstream section, with a goal of generating the prior distribution of CSS duration. Posterior distribution is then constructed using the detected flow rate and travel time vehicles samples. The Markov Chain Monte Carlo (MCMC) sampling method is used to solve this Bayesian model. The proposed model is implemented and tested in a channelized intersection and its modeling results are compared with Vissim simulation outputs, which demonstrated satisfactory results.  相似文献   

2.
    
The primary objective of this study was to evaluate the risks of crashes associated with the freeway traffic flow operating at various levels of service (LOS) and to identify crash-prone traffic conditions for each LOS. The results showed that the traffic flow operating at LOS E had the highest crash potential, followed by LOS F and D. The traffic flow operating at LOS B and A had the lowest crash potential. For LOS A and B, the vehicle platoon and abrupt change in vehicle speeds were major contributing factors to crash occurrences. For LOS C, crash risks were correlated with lane-change maneuvers, speed variation, and small headways in traffic. For LOS D, crash risks increased with an increase in the temporal change in traffic flow variables and the frequency of lane-change maneuvers. For LOS E, crash risks were mainly affected by high traffic volumes and oscillating traffic conditions. For LOS F, crash risks increased with an increase in the standard deviation of flow rate and the frequency of lane-change maneuvers. The findings suggested that the mechanism of crashes were quite different across various LOS. A Bayesian random-parameters logistic regression model was developed to identify crash-prone traffic conditions for various LOS. The proposed model significantly improved the prediction performance as compared to the conventional logistic regression model.  相似文献   

3.
    
Microsimulation of urban systems evolution requires synthetic population as a key input. Currently, the focus is on treating synthesis as a fitting problem and thus various techniques have been developed, including Iterative Proportional Fitting (IPF) and Combinatorial Optimization based techniques. The key shortcomings of these procedures include: (a) fitting of one contingency table, while there may be other solutions matching the available data (b) due to cloning rather than true synthesis of the population, losing the heterogeneity that may not have been captured in the microdata (c) over reliance on the accuracy of the data to determine the cloning weights (d) poor scalability with respect to the increase in number of attributes of the synthesized agents. In order to overcome these shortcomings, we propose a Markov Chain Monte Carlo (MCMC) simulation based approach. Partial views of the joint distribution of agent’s attributes that are available from various data sources can be used to simulate draws from the original distribution. The real population from Swiss census is used to compare the performance of simulation based synthesis with the standard IPF. The standard root mean square error statistics indicated that even the worst case simulation based synthesis (SRMSE = 0.35) outperformed the best case IPF synthesis (SRMSE = 0.64). We also used this methodology to generate the synthetic population for Brussels, Belgium where the data availability was highly limited.  相似文献   

4.
5.
Kim  Yeonbae  Kim  Tai-Yoo  Heo  Eunnyeong 《Transportation》2003,30(3):351-365
In this paper, we estimate a multinomial probit model of work trip mode choice in Seoul, Korea, using the Bayesian approach with Gibbs sampling. This method constructs a Markov chain Gibbs sampler that can be used to draw directly from the exact posterior distribution and perform finite sample likelihood inference. We estimate direct and cross-elasticities with respect to travel cost and the value of time. Our results show that travel demands are more sensitive to travel time than travel cost. The cross-elasticity results show that the bus has a greater substitute relation to the subway than the auto (and vice versa) and that an increase in the cost of an auto will increase the demand for bus transport more so than that of the subway.  相似文献   

6.
This paper analyzes the climate implications of investments in high speed railway lines given uncertainty in future transport demand, technology and power production. To capture the uncertainty of estimated parameters, distributions for the annual traffic emissions reduction required to compensate for the embedded emissions from the construction of infrastructure are calculated using Monte Carlo simulation. In order to balance the annualized emissions from the railway construction, traffic volumes of more than 10 million annual one-way trips are usually required. Most of the traffic diverted from other modes must come from aviation and the project cannot involve the extensive use of tunnels.  相似文献   

7.
Currently there is a true dichotomy in the pavement maintenance and rehabilitation (M&R) literature. On the one hand, there are integer programming-based models that assume that parameters are deterministically known. On the other extreme, there are stochastic models, with the most popular class being based on the theory of Markov decision processes that are able to account for various sources of uncertainties observed in the real-world. In this paper, we present an integer programming-based alternative to account for these uncertainties. A critical feature of the proposed models is that they provide – a priori – probabilistic guarantees that the prescribed M&R decisions would result in pavement condition scores that are above their critical service levels, using minimal assumptions regarding the sources of uncertainty. By construction of the models, we can easily determine the additional budget requirements when additional sources of uncertainty are considered, starting from a fully deterministic model. We have coined this additional budget requirement the price of uncertainty to distinguish from previous related work where additional budget requirements were studied due to parameter uncertainties in stochastic models. A numerical case study presents valuable insights into the price of uncertainty and shows that it can be large.  相似文献   

8.
    
We consider inferring transit route‐level origin–destination (OD) flows using large amounts of automatic passenger counter (APC) boarding and alighting data based on a statistical formulation. One critical problem is that we need to enumerate the OD flow matrices that are consistent with the APC data for each bus trip to evaluate the model likelihood function. The OD enumeration problem has not been addressed satisfactorily in the literature. Thus, we propose a novel sampler to avoid the need to enumerate OD flow matrices by generating them recursively from the first alighting stop to the last stop of the bus route of interest. A Markov chain Monte Carlo (MCMC) method that incorporates the proposed sampler is developed to simulate the posterior distributions of the OD flows. Numerical investigations on an operational bus route under a realistic OD structure demonstrate the superiority of the proposed MCMC method over an existing MCMC method and a state‐of‐the‐practice method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
    
In probabilistic traffic models, consideration of stochasticity in the dynamics of traffic gives a closer representation of a traffic system in comparison to that of a deterministic approach. Monte Carlo simulation is a broadly accepted method to consider variations in traffic within modelling. In this contribution, the possibility of increasing the efficiency of probabilistic traffic flow models using Monte Carlo simulation is analysed using variance reduction techniques and sequencing, for varied capacity and traffic demand values. The techniques of Importance Sampling, Latin Hypercube Sampling and Quasi-Random Sequencing are compared in a dynamic macroscopic traffic model to demonstrate the effectiveness of these techniques for reduction of the computational load when considering multiple input variations. Demonstration of their efficiency in traffic modelling is expected to lead to a wider application of the methods in practice.  相似文献   

10.
    
This paper proposes a stochastic model to determine the yellow time according to the occurring probability of Type‐I dilemma zone (PDZ). Unlike the conventional methods generally based on the deterministic traffic flow theory, the proposed model fully accounts for the randomness of input variables such as approaching speed, deceleration rate, perception‐and‐reaction time, and distance to stop‐line at the yellow onset. A theoretical model is firstly established, and a computational program incorporating Monte Carlo Simulation is then developed to facilitate its general solution. These two alternative solution approaches to derive PDZ and Y are proposed, depending upon whether D/V and (τ + V/2d) follow certain analytical distributions or not. In addition, field data at a typical high‐speed highway intersection are collected to validate the model. Based on the validated model, comprehensive sensitivity analysis is conducted to look into the entire picture of the relationship between PDZ and the distributions as well as correlations of the input variables. To demonstrate the application of the proposed model, the required yellow times for various conditions are calculated based on the acceptable levels of PDZ, and representative application tables for typical cases are finally provided. With the aid of the proposed methodology, traffic engineers are capable of designing yellow time in a more sophisticated manner. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Poor driving habits such as not using turn signals when changing lanes present a major challenge to advanced driver assistance systems that rely on turn signals. To address this problem, we propose a novel algorithm combining the hidden Markov model (HMM) and Bayesian filtering (BF) techniques to recognize a driver’s lane changing intention. In the HMM component, the grammar definition is inspired by speech recognition models, and the output is a preliminary behavior classification. As for the BF component, the final behavior classification is produced based on the current and preceding outputs of the HMMs. A naturalistic data set is used to train and validate the proposed algorithm. The results reveal that the proposed HMM–BF framework can achieve a recognition accuracy of 93.5% and 90.3% for right and left lane changing, respectively, which is a significant improvement compared with the HMM-only algorithm. The recognition time results show that the proposed algorithm can recognize a behavior correctly at an early stage.  相似文献   

12.
    
Establishment of effective cooperation between vehicles and transportation infrastructure improves travel reliability in urban transportation networks. Lack of collaboration, however, exacerbates congestion due mainly to frequent stops at signalized intersections. It is beneficial to develop a control logic that collects basic safety message from approaching connected and autonomous vehicles and guarantees efficient intersection operations with safe and incident free vehicle maneuvers. In this paper, a signal-head-free intersection control logic is formulated into a dynamic programming model that aims to maximize the intersection throughput. A stochastic look-ahead technique is proposed based on Monte Carlo tree search algorithm to determine the near-optimal actions (i.e., acceleration rates) over time to prevent movement conflicts. Our numerical results confirm that the proposed technique can solve the problem efficiently and addresses the consequences of existing traffic signals. The proposed approach, while completely avoids incidents at intersections, significantly reduces travel time (ranging between 59.4% and 83.7% when compared to fixed-time and fully-actuated control strategies) at intersections under various demand patterns.  相似文献   

13.
    
The management of products’ end-of-life and the recovery of used products has gained significant importance in recent years. In this paper, we address the carbon footprint-based problem that arises in a closed-loop supply chain where returned products are collected from customers. These returned products can either be disposed of or be remanufactured to be resold as new ones. Given this environment, an optimization model for a closed-loop supply chain (CLSC) in which carbon emission is expressed in terms of environmental constraints, i.e., carbon emission constraints, is developed. These constraints aim to limit the carbon emission per unit of product supplied with different transportation modes. Here, we design a closed-loop network where capacity limits, single-item management and uncertainty on product demands and returns are considered. First, fuzzy mathematical programming is introduced for uncertain modeling. Then, the statistical approach to the possibility to synthesize fuzzy information is utilized. Therefore, using a defined possibilistic mean and variance, we transform the proposed fuzzy mathematical model into a crisp form to facilitate efficient computation and analysis. Finally, the risk caused by violating the estimated resource constraints is analyzed so that decision makers (DMs) can trade off between the expected cost savings and the expected risk. We utilize data from a company located in Iran.  相似文献   

14.
    
Assessing sustainability of supply chains is a critical and increasingly complex problem. In recent years sustainability has received more attention in supply chain management (SCM) literature with triple bottom lines including social, environmental, and economic factors. Conventional data envelopment analysis (DEA) models consider decision making units (DMUs) as black boxes that consume a set of inputs to produce a set of outputs and do not take into consideration internal interactions of DMUs. Two-stage DEA models deal with such DMUs. However, existing two-stage DEA models are applicable only in technologies characterized by positive inputs/outputs. This paper aims to build and present a new two-stage DEA model considering negative input-intermediate-output data. Some numerical examples along with some theorems and properties are given to show capability of proposed method. The proposed ideas are used in a case study where 29 Iranian supply chains producing equipment of expendable medical devices are evaluated in terms of sustainability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号