共查询到6条相似文献,搜索用时 15 毫秒
1.
This paper proposes simple and direct formulation and algorithms for the probit-based stochastic user equilibrium traffic assignment problem. It is only necessary to account for random variables independent of link flows by performing a simple transformation of the perceived link travel time with a normal distribution. At every iteration of a Monte-Carlo simulation procedure, the values of the random variables are sampled based on their probability distributions, and then a regular deterministic user equilibrium assignment is carried out to produce link flows. The link flows produced at each iteration of the Monte-Carlo simulation are averaged to yield the final flow pattern. Two test networks demonstrate that the proposed algorithms and the traditional algorithm (the Method of Successive Averages) produce similar results and that the proposed algorithms can be extended to the computation of the case in which the random error term depends on measured travel time. 相似文献
2.
This paper addresses a general stochastic user equilibrium (SUE) traffic assignment problem with link capacity constraints. It first proposes a novel linearly constrained minimization model in terms of path flows and then shows that any of its local minimums satisfies the generalized SUE conditions. As the objective function of the proposed model involves path‐specific delay functions without explicit mathematical expressions, its Lagrangian dual formulation is analyzed. On the basis of the Lagrangian dual model, a convergent Lagrangian dual method with a predetermined step size sequence is developed. This solution method merely invokes a subroutine at each iteration to perform a conventional SUE traffic assignment excluding link capacity constraints. Finally, two numerical examples are used to illustrate the proposed model and solution method. 相似文献
3.
Takamasa Iryo 《Transportation Research Part B: Methodological》2011,45(6):867-879
This study provides an example in which the dynamic user equilibrium (DUE) assignment of a congested road network with bottlenecks is non-unique. In previous studies, the uniqueness of DUE assignments with the bottleneck model has been shown in limited cases such as single-origin and single-destination networks. Consequently, it is still an important issue whether or not uniqueness is a general property of DUE assignments. The present study describes a network in which multiple patterns of link travel time are found, thus providing a negative answer to this question. The network has a loopy structure with multiple bottlenecks and multiple origin-destination (OD) pairs. Given a certain demand pattern of departure times for vehicles leaving their origins, a non-convex set of equilibria with a non-unique pattern of link travel times is shown to exist. 相似文献
4.
In order to improve cooperation between traffic management and travelers, traffic assignment is the key component to achieve the objectives of both traffic management and route choice decisions for travelers. Traffic assignment can be classified into two models based on the behavioral assumptions governing route choices: User Equilibrium (UE) and System Optimum (SO) traffic assignment. According to UE and SO traffic assignment, travelers usually compete to choose the least cost routes to minimize their own travel costs, while SO traffic assignment requires travelers to work cooperatively to minimize overall cost in the road network. Thus, the paradox of benefits between UE and SO indicates that both are not practical. Thus, a solution technique needs to be proposed to balance UE and SO models, which can compromise both sides and give more feasible traffic assignments. In this paper, Stackelberg game theory is introduced to the traffic assignment problem, which can achieve the trade-off process between traffic management and travelers. Since traditional traffic assignments have low convergence rates, the gradient projection algorithm is proposed to improve efficiency. 相似文献
5.
The paper proposes a first-order macroscopic stochastic dynamic traffic model, namely the stochastic cell transmission model (SCTM), to model traffic flow density on freeway segments with stochastic demand and supply. The SCTM consists of five operational modes corresponding to different congestion levels of the freeway segment. Each mode is formulated as a discrete time bilinear stochastic system. A set of probabilistic conditions is proposed to characterize the probability of occurrence of each mode. The overall effect of the five modes is estimated by the joint traffic density which is derived from the theory of finite mixture distribution. The SCTM captures not only the mean and standard deviation (SD) of density of the traffic flow, but also the propagation of SD over time and space. The SCTM is tested with a hypothetical freeway corridor simulation and an empirical study. The simulation results are compared against the means and SDs of traffic densities obtained from the Monte Carlo Simulation (MCS) of the modified cell transmission model (MCTM). An approximately two-miles freeway segment of Interstate 210 West (I-210W) in Los Ageles, Southern California, is chosen for the empirical study. Traffic data is obtained from the Performance Measurement System (PeMS). The stochastic parameters of the SCTM are calibrated against the flow-density empirical data of I-210W. Both the SCTM and the MCS of the MCTM are tested. A discussion of the computational efficiency and the accuracy issues of the two methods is provided based on the empirical results. Both the numerical simulation results and the empirical results confirm that the SCTM is capable of accurately estimating the means and SDs of the freeway densities as compared to the MCS. 相似文献
6.
The formulation of the static user equilibrium traffic assignment problem (UETAP) under some simplifying assumptions has a unique solution in terms of link flows but not in terms of path flows. Large variations are possible in the path flows obtained using different UETAP solution algorithms. Many transportation planning and management applications entail the need for path flows. This raises the issue of generating a meaningful path flow solution in practice. Past studies have sought to determine a single path flow solution using the maximum entropy concept. This study proposes an alternate approach to determine a single path flow solution that represents the entropy weighted average of the UETAP path flow solution space. It has the minimum expected Euclidean distance from all other path flow solution vectors of the UETAP. The mathematical model of the proposed entropy weighted average method is derived and its solution stability is proved. The model is easy to interpret and generalizes the proportionality condition of Bar-Gera and Boyce (1999). Results of numerical experiments using networks of different sizes suggest that the path flow solutions for the UETAP using the proposed method are about identical to those obtained using the maximum entropy approach. The entropy weighted average method requires low computational effort and is easier to implement, and can therefore serve as a potential alternative to the maximum entropy approach in practice. 相似文献