首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A bond graph model of a mountain bike and rider is created to develop baseline predictions for the performance of mountain bikes during large excursion maneuvers such as drops, jumps, crashes and rough terrain riding. The model assumes planar dynamics, a hard-tail (front suspension only) bicycle and a rider fixed to the bicycle. An algorithm is developed to allow tracking of a virtual tire-ground contact point for events that separate the wheels from the ground. This model would be most applicable to novice mountain bikers who maintain a nearly rigid relationship between their body and the bicycle as opposed to experienced riders who are versed in controlling the bicycle independent of the body. Simulations of a steep drop are performed for various initial conditions to qualitatively validate the predictions of the model. Results from this model are to be compared to experimental data and more complex models in later research, particularly models including a separate rider. The overarching goals of the research are to examine and understand the dynamics and control of interactions between a cyclist and mountain bike. Specific goals are to understand the improvement in performance afforded by an experienced rider, to hypothesize human control algorithms that allow riders to perform manoeuvres well and safely, to predict structural bike and body forces from these maneuvers and to quantify performance differences between hard-tail and full suspension bicycles.  相似文献   

2.
A Multibody Model for the Simulation of Bicycle Suspension Systems   总被引:2,自引:0,他引:2  
The paper describes a two-dimensional mathematical model for the motion of a bicycle-rider system with wheel suspensions. It focusses on the prediction of vibrational stress on the rider due to uneven track. The model was evaluated by comparing its predictions with measuring data concerning weighted accelerations on the human body, depending on various bicycle designs and road surfaces. For the intended purpose the predictions for vibrational stress and vibrational behaviour are sufficiently precise, and the model turns out to be adequate for designing and developing bicycle suspensions.  相似文献   

3.
This study proposes a bicycle-rider control model based on model predictive control (MPC). First, a bicycle-rider model with leaning motion of the rider’s upper body is developed. The initial simulation data of the bicycle rider are then used to identify the linear model of the system in state-space form for MPC design. Control characteristics of the proposed controller are assessed by simulating the roll-angle tracking control. In this riding task, the MPC uses steering and leaning torques as the control inputs to control the bicycle along a reference roll angle. The simulation results in different cases have demonstrated the applicability and performance of the MPC for bicycle-rider modelling.  相似文献   

4.
The response of a motorcycle is heavily dependent on the rider’s control actions, and consequently a means of replicating the rider’s behaviour provides an important extension to motorcycle dynamics. The primary objective here is to develop effective path-following simulations and to understand how riders control motorcycles. Optimal control theory is applied to the tracking of roadway by a motorcycle, using a non-linear motorcycle model operating in free control by steering torque input. A path-following controller with road preview is designed by minimising tracking errors and control effort. Tight controls with high weightings on performance and loose controls with high weightings on control power are defined. Special attention is paid to the modelling of multipoint preview in local and global coordinate systems. The controller model is simulated over a standard single lane-change manoeuvre. It is argued that the local coordinates point of view is more representative of the way that a human rider operates and interprets information. The simulations suggest that for accurate path following, using optimal control, the problem must be solved by the local coordinates approach in order to achieve accurate results with short preview horizons. Furthermore, some weaknesses of the optimal control approach are highlighted here.  相似文献   

5.
The control behaviour of motorcycle riders is studied by means of a simulation model for the ridermotorcycle system, which stresses the control actions of the riders. The rider model describes the major steering torque control as well as the rider's own body control actions. This simulation model is applied to a single lane change maneuver and the results of this simulation are compared with the experiments in order to examine its validity.  相似文献   

6.
A bicycle or inverted pendulum can be balanced, that is kept nearly upright, by accelerating the base. This balance is achieved by steering on a bicycle. Simultaneously one can also control the lateral position of the base: changing of the track line of a bike or the position of hand under a balanced stick. We show here with theory and experiment that if the balance problem is removed, by making the system neutrally stable for balance, one cannot simultaneously maintain balance and control the position of the base. We made a bricycle, essentially a bicycle with springy training wheels. The stiffness of the training wheel suspension can be varied from near infinite, making the bricycle into a tricycle, to zero, making it effectively a bicycle. The springy training wheels effectively reduce or even negate gravity, at least for balance purposes. One might expect a smooth transition from tricycle to bicycle as the stiffness is varied, in terms of handling, balance and feel. Not so. At an intermediate stiffness, when gravity is effectively zeroed, riders can balance easily but no longer turn. Small turns cause an intolerable leaning. Thus there is a qualitative difference between bicycles and tricycles, a difference that cannot be met halfway.  相似文献   

7.
The energy dissipated by the suspension systems used for off-road bicycles is a major concern due to the limited power source in cycling. Rider induced energy losses are those that arise from the muscular action of the rider. The purpose of this study was to develop and verify a dynamic model of a seated cyclist riding an off-road bicycle up a smooth road. With the absence of terrain irregularities, all suspension motion was rider induced. Knowing the stiffness and dissipative characteristics of the suspension elements, the power dissipated by the suspensions was calculated.

Simulation results were compared to suspension deflections that were experimentally measured for a cyclist riding a commercially available dual suspension bicycle up a 6% grade at 6.5m/s. For this particular case, no fork motion was observed in the experiments which was consistent with the simulation results. For the rear suspension, the mean and amplitude of the largest harmonic were experimentally determined to be 6.6 and ±2.7 mm respectively. Simulation results were within 0.7mm of the mean and within 0.3mm of the amplitude. The only major discrepancy between the experiments and the simulations was the presence of a phase lag in the simulation results which was attributed to inter-subject variability. The power dissipated by the rear suspension was calculated to be 6.9 Watts or 1.3% of the total power input by the rider. Given the grade and forward velocity, this translated into an equivalent mass of 1.8 kg. Thus, the bicycle appeared to be roughly 12% heavier than it actually was.  相似文献   

8.
《JSAE Review》1994,15(3):223-228
The effectiveness of ABS for the motorcycle has been evaluated by comparison with deal braking. However, it is almost impossible for the typical rider to perform ideal braking in an emergency. We conducted braking in a turn test by skilled and less-skilled riders, for the purpose of evaluating the effectiveness of ABS for the typical rider and obtaining data for a method of evaluating motorcycle ABS performance. It was shown that ABS for the motorcycle is effective for both skilled and less-skilled riders in terms of braking distance and vehicle stability.  相似文献   

9.
本文中针对自动驾驶车辆在环境感知过程中易将行人与骑车人混淆的问题,提出一种有效区分行人与骑车人的联合检测方法,并基于快速区域卷积神经网络Faster R-CNN进行改进.首先,通过增加一个子网络提取图像形状特征通道,将其与主干网络生成的特征图进行聚合,额外的形状语义通道用以辅助检测器区分行人与骑车人的特征;接着,通过构...  相似文献   

10.
A variable stiffness architecture is used in the suspension system to counteract the body roll moment, thereby enhancing the roll stability of the vehicle. The variation of stiffness concept uses the ‘reciprocal actuation’ to effectively transfer energy between a vertical traditional strut and a horizontal oscillating control mass, thereby improving the energy dissipation of the overall suspension. The lateral dynamics of the system is developed using a bicycle model. The accompanying roll dynamics are also developed and validated using experimental data. The positions of the left and right control masses are sequentially allocated to reduce the effective body roll and roll rate. Simulation results show that the resulting variable stiffness suspension system has more than 50% improvement in roll response over the traditional constant stiffness counterparts. The simulation scenarios examined is the fishhook manoeuvre.  相似文献   

11.
In the current environment of increased emphasis on sustainable transport, there is manifold increase in the use of bicycles for urban transport. One concern which might restrict the use is the ride comfort and fatigue. There has been limited research in addressing the difficulty in bicycle ride comfort quantification. The current study aims to develop a methodology to quantify bicycle discomfort so that performance of bicycles constructed from bamboo and aluminium alloy can be compared. Experimentally obtained frequency response functions are used to establish a relation between the road input and the seat and rider response. A bicycle track input profile based on standard road profiles is created so as to estimate the acceleration responses. The whole-body-vibration frequency weighting is applied to quantify the perception of vibration intensity so that eventual discomfort ranking can be obtained. The measured frequency response functions provide an insight into the effect of frame dynamics on the overall resonant behaviour of the bicycles. The beneficial effect of frame compliance and damping on lower modes of vibration is very clear in the case of bamboo frame, in turn affecting seat and rider response. In the bamboo frame, because of multiple resonances, the frequency response of the handlebar is smaller at higher frequencies suggesting effective isolation. Further improvements may have come from the joints made from natural composites. Overall, based on the comparative analysis and the methodology developed, bamboo frame shows significant improvement in ride comfort performance compared with the aluminium frame.  相似文献   

12.
13.
14.
准确识别非机动车道内的交通冲突事件既是量化评价非机动车道安全水平的基础,也是剖析与理解非机动车道内运行风险产生与发展过程的重要前提.基于轨迹的交通冲突识别与分析技术已被运用于城市交叉口处机动车之间以及机非之间的交互安全分析,但目前鲜有聚焦非机动车道场景内交通冲突事件的分析方法.针对该问题,提出一种基于个体的(Agent...  相似文献   

15.
This study proposes a steering control method to improve motorcycle handling and stability. Steer-by-wire (SBW) technology is applied to the motorcycle's steering system to remove characteristic difficulties of vehicle maneuvers. By examining computer simulation using a simplified motorcycle model, the actual rolling angle of the SBW motorcycle is controlled to follow the desired rolling angle intended by the rider. A state feedback control such as linear quadratic control gives the SBW vehicle a good follow-through performance compared with proportional-derivative control because it can decouple rolling motion from the other motions, which affect the rolling motion in the strongly coupled motorcycle system.  相似文献   

16.
SUMMARY

Recent research on autonomous highway vehicles has begun to focus on lateral control strategies. The initial work has focused on vehicle control during low-g maneuvers at constant vehicle speed, typical of lane merging and normal highway driving. In this paper, and its companion paper, to follow, the lateral control of vehicles during high-g emergency maneuvers is addressed. Models of the vehicle dynamics are developed, showing the accuracy of the different models under low and high-g conditions. Specifically, body roll, tire and drive-train dynamics, tire force saturation, and tire side force lag are shown to be important effects to include in models for emergency maneuvers. Current controllers, designed for low-g maneuvers only, neglect these effects. The follow on paper demonstrates the performance of lateral controllers during high-g lateral emergency maneuvers using these vehicle models.  相似文献   

17.
Recent research on autonomous highway vehicles has begun to focus on lateral control strategies. The initial work has focused on vehicle control during low-g maneuvers at constant vehicle speed, typical of lane merging and normal highway driving. In this paper, and its companion paper, to follow, the lateral control of vehicles during high-g emergency maneuvers is addressed. Models of the vehicle dynamics are developed, showing the accuracy of the different models under low and high-g conditions. Specifically, body roll, tire and drive-train dynamics, tire force saturation, and tire side force lag are shown to be important effects to include in models for emergency maneuvers. Current controllers, designed for low-g maneuvers only, neglect these effects. The follow on paper demonstrates the performance of lateral controllers during high-g lateral emergency maneuvers using these vehicle models.  相似文献   

18.
为解决特种车辆或载重车辆在极端工况下易侧翻的问题,提出了一种兼具馈能与主动抗侧倾功能的电控液压悬架系统。对该悬架系统的主动抗侧倾模式和馈能模式进行了功能原理设计与分析;针对主动抗侧倾模式与馈能模式,构建了电液悬架系统仿真模型;设计了电液悬架系统主动抗侧倾模糊PID控制策略和侧倾力矩分配方案,以及执行机构逻辑门限值控制策略,并基于Matlab/Simulink、TruckSim和AMESim仿真软件,搭建了电液悬架系统主动抗侧倾控制策略联合仿真平台;对装配有电液悬架系统的车辆模型在极限工况下的抗侧倾性能进行仿真分析,并对车辆在随机路面激励输入下的馈能特性进行仿真分析。结果表明,装配该电液悬架的特种车辆具备较强的防侧翻能力,并具有较好的悬架运动能量回收潜力。  相似文献   

19.
Many French and European cities have developed a bike sharing system since 2005. This policy may be explained in a great part by the success of the Velo??v in Lyon, which contributed to improve the image of cycling in the city. If bicycles, however, appear to find a new place in the city, one can wonder whether this is really due to bike sharing systems? What are the real uses of bicycles in contemporary cities, with or without such a system? To answer these questions, the paper starts with a literature review on bicycle in the city, to draw lessons from recent experiences of bike sharing systems. It then discusses the two cases of Lyon and Lille, which never had a bike sharing system on its own. The evolution of bicycle use is measured with a comparison of household transportation surveys in Lyon (1995 and 1998) and Lille (1998 and 2006). In both cities, the analysis reveals a rise in the proportion of healthiest citizens among urban bikers, as well as a return of bikes in dense areas. Bike sharing systems are part of such tendencies. They support them, but should not become a panacea for policies supporting bike use in the city.  相似文献   

20.
A 7-DOF full-car model with optimal active control suspension is utilized to evaluate the vehicle dynamic performances which are achieved through proposed controllers. The optimal controller, which includes the integral action for the suspension deflection, considerably improves the attitude control of a vehicle because the rolling and pitching motion in cornering and braking maneuvers are reduced, respectively. In the viewpoint of level control, the integral control acting on the suspension deflection results in the zero steady-state deflection in response to static body forces and ramp road input. The dynamic characteristics of the suspension control system are evaluated in terms of time domain and frequency domain. The simulations in the time domain demonstrate the advantages of the active suspension system obtained by penalizing the integral and derivative of suspension deflections and the derivative of roll and pitch angles in the performance index. The frequency characteristic curves obtained by simulations regarding integral action or derivative action show the increase of both ride comfort and road-holding performances by maximizing the use of suspension deflections. The potential of derivative control is shown by the performances of the car traveling over a bump and braking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号