首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In this paper, a new methodology is presented for real-time detection and characterization of incidents on surface streets. The proposed automatic incident detection approach is capable of detecting incidents promptly as well as characterizing incidents in terms of time-varying lane-changing fractions and queue lengths in blocked lanes, lanes blocked due to incidents, and incident duration. The architecture of the proposed incident detection approach consists of three sequential procedures: (1) Symptom Identification for identification of incident symptoms, (2) Signal Processing for real-time prediction of incident-related lane traffic characteristics and (3) Pattern Recognition for incident recognition. Lane traffic counts and occupancy are the only two major types of input data, which can be readily collected from point detectors. The primary techniques utilized in this paper include: (1) a discrete-time, nonlinear, stochastic system with boundary constraints to predict real-time lane-changing fractions and queue lengths and (2) a pattern-recognition-based algorithm employing modified sequential probability ratio tests (MSPRT) to detect incidents. Off-line tests based on simulated as well as video-based real data were conducted to assess the performance of the proposed algorithm. The test results have indicated the feasibility of achieving real-time incident detection using the proposed methodology.  相似文献   

2.
The statistical analysis of highway incident duration has become an increasingly import research topic due to the impact that highway incidents (vehicle accidents and disablements) have on traffic congestion. In addition, there is a growing need to evaluate incident management programs that seek to reduce incident duration and incident-induced traffic congestion. We apply hazard-based duration models to statistically evaluate the time it takes detect/report, respond to, and clear incidents. Two-year data from Washington State's incident response team program were used to estimate the hazard models. The model estimation results show that a wide variety of factors significantly affect incident times (i.e. detection/reporting, response, and clearance times), and that different distributional assumptions for the hazard function are appropriate for the different incident times being considered. It was also found that the estimated coefficients were not stable between the two years of data used in model estimation. The findings of this paper provide an important demonstration of method and an empirical basis to assess incident management programs.  相似文献   

3.
Rapidly deteriorating travel conditions in U.S. metropolitan areas have led to renewed interest in more effectively managing nonrecurrent congestion. Effective incident management requires an understanding of incident patterns, frequency, and duration. However, such information is limited. This paper presents an analysis of incidents using data from a major Los Angeles, California freeway. Incident patterns are described, and duration is analyzed as a function of incident characteristics. Results indicate that accidents make up a very small proportion of all incidents, but account for a relatively greater share of all incident duration. Major explanatory factors of incident duration include incident type, time of day, truck involvement, and lane closures. The paper concludes with a discussion of alternative approaches to reducing the congestion impacts of incidents.  相似文献   

4.
Traffic incidents are a principal cause of congestion on urban freeways, reducing capacity and creating risks for both involved motorists and incident response personnel. As incident durations increase, the risk of secondary incidents or crashes also becomes problematic. In response to these issues, many road agencies in metropolitan areas have initiated incident management programs aimed at detecting, responding to, and clearing incidents to restore freeways to full capacity as quickly and safely as possible. This study examined those factors that impact the time required by the Michigan Department of Transportation Freeway Courtesy Patrol to clear incidents that occurred on the southeastern Michigan freeway network. These models were developed using traffic flow data, roadway geometry information, and an extensive incident inventory database. A series of parametric hazard duration models were developed, each assuming a different underlying probability distribution for the hazard function. Although each modeling framework provided results that were similar in terms of the direction of factor effects, there was significant variability in terms of the estimated magnitude of these impacts. The generalized F distribution was shown to provide the best fit to the incident clearance time data, and the use of poorer fitting distributions was shown to result in severe over‐estimation or under‐estimation of factor effects. Those factors that were found to impact incident clearance times included the time of day and month when the incident occurred, the geometric and traffic characteristics of the freeway segment, and the characteristics of each incident. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Predicting the duration of traffic incidents sequentially during the incident clearance period is helpful in deploying efficient measures and minimizing traffic congestion related to such incidents. This study proposes a competing risk mixture hazard-based model to analyze the effect of various factors on traffic incident duration and predict the duration sequentially. First, topic modeling, a text analysis technique, is used to process the textual features of the traffic incident to extract time-dependent topics. Given four specific clearance methods and the uncertainty of these methods when used during traffic incidents, the proposed mixture model uses the multinomial logistic model and parametric hazard-based model to assess the influence of covariates on the probability of clearance methods and on the duration of the incident. Subsequently, the performance of estimated mixture model in sequentially predicting the incident duration is compared with that of the non-mixture model. The prediction results show that the presented mixture model outperforms the non-mixture model.  相似文献   

6.
Many states in the US have enacted quick clearance laws requiring drivers of vehicles involved in minor incidents to move their vehicles from travel lanes prior to the arrival of first responders. Since little is known about the effectiveness of these laws, this research sought to find the benefit–cost ratio of advertising quick clearance legislation to improve driver compliance, and compare it with benefit–cost ratios of other incident management strategies, particularly traffic cameras, freeway service patrols, and traffic sensors. The analysis used traffic simulation that applied application programming interfaces to produce random spatial and temporal occurrence of incidents, including incident start times, durations, and locations, based on normal distributions developed from field data, to test before and after the law scenarios. The results provide decision makers with support for prioritizing funding between these incident management strategies and indicated that investments in the advertisement of this law was beneficial. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
ABSTRACT

Incidents are a major source of traffic congestion and can lead to long and unpredictable delays, deteriorating traffic operations and adverse environmental impacts. The emergence of connected vehicles and communication technologies has enabled travelers to use real-time traffic information. The ability to exchange traffic information among vehicles has tremendous potential impacts on network performance especially in the case of non-recurrent congestion. To this end, this paper utilizes a microscopic simulation model of traffic in El Paso, Texas to investigate the impacts of incidents on traffic operation and fuel consumption at different market penetration rates (MPR) of connected vehicles. Several scenarios are implemented and tested to determine the impacts of incidents on network performance in an urban area. The scenarios are defined by changing the duration of incidents and the number of lanes closed. This study also shows how communication technology affects network performance in response to congestion. The results of the study demonstrate the potential effectiveness of connected vehicle technology in improving network performance. For an incident with a duration of 900?s and MPR of 80%, total fuel consumption and total travel time decreased by approximately 20%; 26% was observed in network-wide travel time and fuel consumption at 100% MPR.  相似文献   

8.
Traffic incidents are recognised as one of the key sources of non-recurrent congestion that often leads to reduction in travel time reliability (TTR), a key metric of roadway performance. A method is proposed here to quantify the impacts of traffic incidents on TTR on freeways. The method uses historical data to establish recurrent speed profiles and identifies non-recurrent congestion based on their negative impacts on speeds. The locations and times of incidents are used to identify incidents among non-recurrent congestion events. Buffer time is employed to measure TTR. Extra buffer time is defined as the extra delay caused by traffic incidents. This reliability measure indicates how much extra travel time is required by travellers to arrive at their destination on time with 95% certainty in the case of an incident, over and above the travel time that would have been required under recurrent conditions. An extra buffer time index (EBTI) is defined as the ratio of extra buffer time to recurrent travel time, with zero being the best case (no delay). A Tobit model is used to identify and quantify factors that affect EBTI using a selected freeway segment in the Southeast Queensland, Australia network. Both fixed and random parameter Tobit specifications are tested. The estimation results reveal that models with random parameters offer a superior statistical fit for all types of incidents, suggesting the presence of unobserved heterogeneity across segments. What factors influence EBTI depends on the type of incident. In addition, changes in TTR as a result of traffic incidents are related to the characteristics of the incidents (multiple vehicles involved, incident duration, major incidents, etc.) and traffic characteristics.  相似文献   

9.
Network area-wide impacts due to major traffic incidents can be assessed using a microsimulation approach. A VISSIM microsimulation model for a motorway network has been developed and is used to quantify impacts of a major incident in terms of associated costs. The modelled results reveal that a 65% capacity reduction results in 36% more incident-induced delay when compared with the application of a 50% capacity reduction assumption for a two-hour incident clearance duration that blocked one lane of a two-lane motorway. Additionally, an incident which caused a full blockage incurred 40 times more associated impact costs when compared with a major incident which caused a one lane blockage. A 23% cost saving can be achieved by clearing one lane of a fully blocked two-hour major traffic incident after 90 minutes, while a 37% cost saving can be achieved by clearing all blockages after 90 minutes.  相似文献   

10.
Traffic congestion has been a growing issue in many metropolitan areas during recent years, which necessitates the identification of its key contributors and development of sustainable strategies to help decrease its adverse impacts on traffic networks. Road incidents generally and crashes specifically have been acknowledged as the cause of a large proportion of travel delays in urban areas and account for 25% to 60% of traffic congestion on motorways. Identifying the critical determinants of travel delays has been of significant importance to the incident management systems, which constantly collect and store the incident duration data. This study investigates the individual and simultaneous differential effects of the relevant determinants on motorway crash duration probabilities. In particular, it applies parametric Accelerated Failure Time (AFT) hazard‐based models to develop in‐depth insights into how the crash‐specific characteristic and the associated temporal and infrastructural determinants impact the duration. AFT models with both fixed and random parameters have been calibrated on one year of traffic crash records from two major Australian motorways in South East Queensland, and the differential effects of determinants on crash survival functions have been studied on these two motorways individually. A comprehensive spectrum of commonly used parametric fixed parameter AFT models, including generalized gamma and generalized F families, has been compared with random parameter AFT structures in terms of goodness of fit to the duration data, and as a result, the random parameter Weibull AFT model has been selected as the most appropriate model. Significant determinants of motorway crash duration included traffic diversion requirement, crash injury type, number and type of vehicles involved in a crash, day of week and time of day, towing support requirement and damage to the infrastructure. A major finding of this research is that the motorways under study are significantly different in terms of crash durations; such that motorway 1 exhibits durations that are on average 19% shorter compared with the durations on motorway 2. The differential effects of explanatory variables on crash durations are also different on the two motorways. The detailed presented analysis confirms that looking at the motorway network as a whole, neglecting the individual differences between roads, can lead to erroneous interpretations of duration and inefficient strategies for mitigating travel delays along a particular motorway.  相似文献   

11.
Unconventional intersection designs have been used to increase the capacity of intersections that are over‐saturated under conventional ones. However, existing unconventional designs typically require extra land space and their effectiveness often depends on drivers' familiarity with the uncommon operating rules. To overcome these challenges, we propose a new unconventional design, where movements that are mutually incompatible under the conventional design can be made compatible of each other by allocating exit lanes to them appropriately, thereby creating opportunities for capacity improvement. We develop a lane‐based capacity optimization model that incorporates the allocation of exit lanes as decision variables. The model is formulated as a Binary Mixed Integer Linear Programming problem, which can be efficiently solved by standard branch‐and‐bound algorithms. Numerical experiments show that significant capacity improvement can be obtained under our design. Besides proposing a new unconventional design, we also contribute to the literature of lane‐based signal optimization methods by providing a novel linear formulation for the latest, yet nonlinear, model described in Wong and Heydecker [Transportation Research Part B 45(4):667–681]. This improvement is methodologically beneficial as linear models are computationally more convenient than nonlinear ones. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
The early warning of incidents on urban arterial roads in a congested city can reduce delay, accidents and pollutant emission. Freeway incident detection systems implemented in recent years may not be suitable for arterial incidents. Arterial incident detection is more difficult. The traffic flow on an arterial road is not conserved from the upstream end of a road link to the downstream end because urban traffic does turn in and out of side‐streets, car‐parks and local residences. Roadside friction such as kerbside parking and shopping traffic also tends to create apparent incidents which are in fact frequent and normal events. This paper develops a definition for an arterial incident and describes a case study on an arterial road in Melbourne, Australia. The study shows that detectors upstream of an incident are more useful for incident detection than downstream detectors. It also identifies occupancy and speed as the appropriate parameters to characterise and detect arterial incidents.  相似文献   

13.
This research study was designed to assess by simulation the efficacy of incident detection by cellular phone call-in programs. The assessment was conducted by varying the proportion of drivers with cellular phones on the highway so as to mirror the cellular industry statistics that show a continued growth of ownership of cellular phones in the United States. An analytical model, which combined simulation and the limited field data available in the literature, was used to determine measures of effectiveness of the cellular phone-based detection system. The results showed that a cellular phone detection system offers fast incident detection times and higher detection rates for both shoulder and lane blocking incidents. For example, in moderate traffic flow (i.e. 1,550 vehicles per hour per lane), 90 percent of incidents blocking two lanes were detected in 1.5 minutes when the proportion of drivers with cellular phones was one out of 10 drivers, even with only 20 percent of them willing to report incidents. When the current proportion of cellular ownership, i.e. 1 out of 3, was used in the simulation, the detection time improved to 0.8 minutes. The simulation analysis of incident detection by cellular phones also showed that there is a direct relationship between the probability of detection and the detection time; that is, the specification of a higher detection rate resulted in slower detection times. This is in sharp contrast with the results of field study of automatic incident detection (AID) systems which demonstrated an inverse relationship between probability of detection and detection time. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
This paper considers the problem of freeway incident detection within the general framework of computer‐based freeway surveillance and control. A new approach to the detection of freeway traffic incidents is presented based on a discrete‐time stochastic model of the form ARIMA (0, 1, 3) that describes the dynamics of traffic occupancy observations. This approach utilizes real‐time estimates of the variability in traffic occupancies as detection thresholds, thus eliminating the need for threshold calibration and lessening the problem of false‐alarms. Because the moving average parameters of the ARIMA (0, 1, 3) model change over time, these parameters can be updated occasionally. The performance of the developed detection algorithm has been evaluated in terms of detection rate, false‐alarm rate, and average time‐lag to detection, using a total of 1692 minutes of occupancy observations recorded during 50 representative traffic incidents.  相似文献   

15.
The decision to cycle frequently in an urban setting is a complex process and is affected by a variety of factors. This study analyzed the various factors influencing cycling frequency among 1707 cyclists from Montreal, Canada using an ordinal logistic regression. A segmentation of cyclists is used in a series of ordinal logistic models to better understand the different impacts of variables on the frequency of cycling among each group of cyclists for commute and for utilitarian purposes. Our models show a variation in the impacts of each dependent variable on frequency of cycling across the various segments of cyclists. Mainly making cyclists feel safe not only on bicycle specific infrastructure but also on regular streets, emphasizing the low cost, convenience and improving the opinion on cycling in the population are effective interventions to increase bicycle usage. Also, it was shown that women were less likely to cycle to work than men, but more likely to cycle for other utilitarian trips, pointing at the presence of specific barriers to commuting for woman. Although the findings from this study are specific to Montreal, they can be of interest to transportation planners and engineers working toward increasing cycling frequency in other regions.  相似文献   

16.
This study presents a multilane model for analyzing the dynamic traffic properties of a highway segment under a lane‐closure operation that often incurs complex interactions between mandatory lane‐changing vehicles and traffic at unblocked lanes. The proposed traffic flow formulations employ the hyperbolic model used in the non‐Newtonian fluid dynamics, and assume the lane‐changing intensity between neighboring lanes as a function of their difference in density. The results of extensive simulation experiments indicate that the proposed model is capable of realistically replicating the impacts of lane‐changing maneuvers from the blocked lanes on the overall traffic conditions, including the interrelations between the approaching flow density, the resulting congestion level, and the exiting flow rate from the lane‐closure zone. Our extensive experimental analyses also confirm that traffic conditions will deteriorate dramatically and evolve to the state of traffic jam if the density has exceeded its critical level that varies with the type of lane‐closure operations. This study also provides a convenient way for computing such a critical density under various lane‐closure conditions, and offers a theoretical basis for understanding the formation as well as dissipation of traffic jam.  相似文献   

17.
Huge public transport subsidies caused by deficits have become a heavy financial burden on some local governments due to the decline of bus passenger numbers. It is essential to apply the performance‐based contract to bus services considering maximization of social welfare. This paper constructs an incentive subsidy contract considering the decision‐making powers of the service level and calculating the proper frequency elasticity aiming at two problems of performance‐based contracts. Meanwhile, we consider a role of bus operators ignored by most researchers. Under the scheme, the decision‐making power of the service level is discussed based on five assumptions, and meanwhile, bus operators are motivated to reduce cost and improve service level in the scheme. The case of the bus service of Arao city indicates that the optimal frequency equals to zero when bus operators decide frequency. If bus operators determine efforts, the optimal effort also equals to zero with the goal of maximizing the profit. Also, bus operators can play their roles in lessening cost and improving service level to help bus operators and the local government achieve a win‐win situation, which maximizes the social benefit in this subsidy scheme when all factors are decided by the government. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a joint trivariate discrete-continuous-continuous model for commuters’ mode choice, work start time and work duration. The model is designed to capture correlations among random components influencing these decisions. For empirical investigation, the model is estimated using a data set collected in the Greater Toronto Area (GTA) in 2001. Considering the fact that work duration involves medium- to long-term decision making compared to short-term activity scheduling decisions, work duration is considered endogenous to work start time decisions. The empirical model reveals many behavioral details of commuters’ mode choice, work start time and duration decisions. The primary objective of the model is to predict workers’ work schedules according to mode choice, which is considered a skeletal activity schedule in activity-based travel demand models. However, the empirical model reveals many behavioral details of workers’ mode choices and work scheduling. Independent application of the model for travel demand management policy evaluations is also promising, as it provides better value in terms of travel time estimates.  相似文献   

19.
Broadcast capacity of the entire network is one of the fundamental properties of vehicular ad hoc networks (VANETs). It measures how efficiently the information can be transmitted in the network and usually it is limited by the interference between the concurrent transmissions in the physical layer of the network. This study defines the broadcast capacity of vehicular ad hoc network as the maximum successful concurrent transmissions. In other words, we measure the maximum number of packets which can be transmitted in a VANET simultaneously, which characterizes how fast a new message such as a traffic incident can be transmitted in a VANET. Integer programming (IP) models are first developed to explore the maximum number of successful receiving nodes as well as the maximum number of transmitting nodes in a VANET. The models embed an traffic flow model in the optimization problem. Since IP model cannot be efficiently solved as the network size increases, this study develops a statistical model to predict the network capacity based on the significant parameters in the transportation and communication networks. MITSIMLab is used to generate the necessary traffic flow data. Response surface method and linear regression technologies are applied to build the statistical models. Thus, this paper brings together an array of tools to solve the broadcast capacity problem in VANETs. The proposed methodology provides an efficient approach to estimate the performance of a VANET in real-time, which will impact the efficacy of travel decision making.  相似文献   

20.
Decreasing the uncertainty in the lengths of railway disruptions is a major help to disruption management. To assist the Dutch Operational Control Center Rail (OCCR) during disruptions, we propose the Copula Bayesian Network method to construct a disruption length prediction model. Computational efficiency and fast inference features make the method attractive for the OCCR’s real-time decision making environment. The method considers the factors influencing the length of a disruption and models the dependence between them to produce a prediction. As an illustration, a model for track circuit (TC) disruptions in the Dutch railway network is presented in this paper. Factors influencing the TC disruption length are considered and a disruption length model is constructed. We show that the resulting model’s prediction power is sound and discuss its real-life use and challenges to be tackled in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号