首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
路面附着性能影响因素分析及其改善对策的研究   总被引:3,自引:0,他引:3  
李松龄  裴玉龙 《公路》2007,(11):126-130
路面附着性能是决定汽车安全行驶的必要条件。影响轮胎与路面间附着性能的因素很多,主要包括轮胎、路面及汽车行驶状态等等。针对上述影响因素,分别对路面类型、路面状况、轮胎结构、胎面花纹及花纹深度、轮胎气压和车速等主要影响因素进行了深入分析,研究了各因素之间的内在联系和变化特点,揭示了各因素对路面附着性能的影响规律,并从路面和轮胎两个方面提出了改善轮胎与路面间附着性能的对策,从而提高汽车行驶的安全性。  相似文献   

2.
黎晓 《汽车与安全》2009,(12):54-55
轮胎的安全性能在很大程度上取决于其抓地能力和稳定性。行驶在冰雪路面,如果使用普通夏季轮胎或全季候轮胎,车辆很容易出现打滑、失控等意外情况,严重威胁到驾驶者和行人的人身安全。2009年11月9日,米其林公司在中国正式发布了第二代米其林XICE冬季轮胎-XICEX12。  相似文献   

3.
胎面单元对轮胎薄膜湿牵引性能的影响   总被引:2,自引:0,他引:2  
在潮湿的天气或雨后,轮胎胎面或路面上存在一层很薄的水膜,该水膜使车辆行驶的牵引力降低。建立了轮胎胎面单元挤压膜问题的数学模型,并进行了数值求解,分析了胎面单元的几何参数,液膜厚度和柔性对轮胎薄膜湿牵引性能的影响,为轮胎胎面花纹的合理设计提供了理论依据。  相似文献   

4.
正汽车轮胎作为汽车行驶系统组成部分之一,对汽车的行驶性能有着重要的影响。轮胎按照用途分为普通轮胎、雪泥轮胎、雪地轮胎。根据汽车行驶条件合理地选用汽车轮胎是每个驾驶员安全出行的重要保障之一。然而,虽然不同轮胎的用途分类分明,但在我国严寒地区雪地胎的使用率仍不高,由于错误使用轮胎导致的交通事故仍有较高的发生率。本文从错用率最高的普通四季轮胎和雪地轮胎的性能差异研究对比出发,分析普通四季轮胎和雪地轮胎在冰雪路面行驶中的抓地性能,通过试验获得两者在雪面制动、冰雪圆环和雪面操控3个项目上的数据差异,直观地反映普  相似文献   

5.
对汽车高速行驶的路面不平度激励、发动机激励、传动轴不平衡激励和轮胎激励进行全面分析,以模拟汽车高速行驶时的垂向和横向振动,研究汽车的高速行驶性能。  相似文献   

6.
汽车轮胎的充气气压,除按各厂牌、规格、品种等所规定的标准进行充气外,有时还随着轮胎的规格层级、帘线结构材料、车辆的类型、使用条件、环境等方面的情况,适时进行调整,以提高汽车的使用性能、经济性能和轮胎的使用寿命。 标准所规定的轮胎气压,是在一般的路面上正常行驶情况下的气压。在路面拱度超过4%的地区行驶的长途运输汽车,为了适应路面拱度,前轮和后轮内档轮胎应按规定的标准气压充气,必要时后轮外档轮胎的  相似文献   

7.
雨天在高速公路上行驶比一般公路上行驶更为危险.因为在潮湿路面行驶时附着系数则睫速度增加而急剧减小当速度达到一定时就会产生。水滑现象.即雨天汽车在积水路面上高速行驶时轮胎与路面问的存水不能排除.水的压力使车  相似文献   

8.
蔚青 《城市车辆》2008,(2):47-47
2008年1月,世界轮胎业的知名品牌米其林公司在“冰城”哈尔滨举行了米其林X—ICE冬季轮胎试驾试乘体验活动。米其林X-ICE冬季轮胎是一款专门为冬季寒冷天气和恶劣路面环境而设计的轮胎,可以为驾驶者提供更高的安全保障,让驾驶者尽情体验冰雪路面上的安全驾驶。X-ICE冬季轮胎不仅可以在冬季路面上提供更好的刹车性能,提高车辆的操控性能,  相似文献   

9.
杨忠敏 《汽车情报》2004,(10):42-45
轮胎是汽车的重要部件之一,它直接与路面接触,和汽车悬架共同来缓和汽车行驶时所受到的冲击,保证汽车有良好的乘座舒适性和行驶平顺性;保证车轮和路面有良好的附着性,提高汽车的牵引性、制动性和通过性;承受着汽车的重量,轮胎在汽车上所起的重要作用越来越受到人们的重视。好的轮胎,是汽车行驶安全舒适的第一步,如今随着越来越多的轿车进入家庭,其汽车轮胎市场的崛起也是凸现的。  相似文献   

10.
汽车轮胎的发展   总被引:1,自引:0,他引:1  
王毅 《上海汽车》2002,(2):43-44
轮胎是汽车的重要部件之一,它直接与路面接触,和汽车悬架共同来缓和汽车行驶时所受到的冲击,保证汽车有良好的乘座舒适性和行驶平顺性;保证车轮和路面有良好的附着性,提高汽车的牵引性、制动性和通过性;承受着汽车的重量,轮胎在汽车上所起的重要作用越来越受到人们的重视。  相似文献   

11.
The robustness of an existing numerical method for the time-optimal control of the race car is demonstrated through its application to a model of a Formula 1 car equipped with a simplified thermodynamic tyre model. The tyre model includes a temperature- and frequency-dependent model of road/tyre friction. A lumped parameter approach is used to model the thermodynamics of the various parts of the tyre such as the tread, carcass and inflation gas. The influence of tyre, track surface and ambient temperatures on time-optimal manoeuvring is presented.  相似文献   

12.
论轮胎与路面间的摩擦   总被引:4,自引:0,他引:4  
对轮胎与路面间摩擦产生的机理和影响因素进行了分析。其中产生的机理可归纳为轮胎与路面间分子引力的作用、轮胎与路面间的粘着作用、胎面橡胶的弹性变形及路面上小尺寸微凸体的微切削作用四种;影响轮胎与路面间摩擦的主要因素有滑移率,轮胎类型,胎面花纹的类型、密度系数、深度,路面粗糙度,路面污染情况,路面水膜,气候及充气压力等。  相似文献   

13.
ABSTRACT

The interaction between the tyre and the road is crucial for understanding the dynamic behaviour of a vehicle. The road–tyre friction characteristics play a key role in the design of braking, traction and stability control systems. Thus, in order to have a good performance of vehicle dynamic stability control, real-time estimation of the tyre–road friction coefficient is required. This paper presents a new development of an on-line tyre–road friction parameters estimation methodology and its implementation using both LuGre and Burckhardt tyre–road friction models. The proposed method provides the capability to observe the tyre–road friction coefficient directly using measurable signals in real-time. In the first step of our approach, the recursive least squares is employed to identify the linear parameterisation form of the Burckhardt model. The identified parameters provide, through a T–S fuzzy system, the initial values for the LuGre model. Then, a new LuGre model-based nonlinear least squares parameter estimation algorithm using the proposed static form of the LuGre to obtain the parameters of LuGre model based on recursive nonlinear optimisation of the curve fitting errors is presented. The effectiveness and performance of the algorithm are demonstrated through the real-time model simulations with different longitudinal speeds and different kinds of tyres on various road surface conditions in both Matlab/Carsim environments as well as collected data from real experiments on a commercial trailer.  相似文献   

14.
This article seeks to develop a longitudinal vehicle velocity estimator robust to road conditions by employing a tyre model at each corner. Combining the lumped LuGre tyre model and the vehicle kinematics, the tyres internal deflection state is used to gain an accurate estimation. Conventional kinematic-based velocity estimators use acceleration measurements, without correction with the tyre forces. However, this results in inaccurate velocity estimation because of sensor uncertainties which should be handled with another measurement such as tyre forces that depend on unknown road friction. The new Kalman-based observer in this paper addresses this issue by considering tyre nonlinearities with a minimum number of required tyre parameters and the road condition as uncertainty. Longitudinal forces obtained by the unscented Kalman filter on the wheel dynamics is employed as an observation for the Kalman-based velocity estimator at each corner. The stability of the proposed time-varying estimator is investigated and its performance is examined experimentally in several tests and on different road surface frictions. Road experiments and simulation results show the accuracy and robustness of the proposed approach in estimating longitudinal speed for ground vehicles.  相似文献   

15.
ABSTRACT

During straight-ahead running, the longitudinal axis of road vehicles, notably cars, is not parallel to road axis. This occurrence is general and is due both to road cross slope (road banking) and to tyre characteristics, particularly ply-steer and conicity. In order to describe such a phenomenon, the paper develops a new and relatively simple analytical model. Despite the model is linear, the solution which is provided is exact, since straight-ahead motion occurs with small angles and both the elastokinematics of suspension system and tyre characteristics can be modelled by linearised equations. The Handling Diagram theory is updated and completed by introducing the actual shifts of tyre characteristics. The validation of the analytical expressions is performed by using a MSC AdamsTM full model of a car. A subjective-objective experimental test campaign provides preliminary substantiation of the ability of the derived formulae to describe tyre performance. By means of the unreferenced analytical formulae developed in the paper, we allow, given the vehicle, the proper tyre design specification and vice-versa. In particular, a formula is given to make null the steering torque during straight-ahead driving. The derived analytical formulae may provide a sound understanding of the straight-ahead running of road vehicles.  相似文献   

16.
A set of scaling factors has been introduced by Pacejka [Pacejka, H.B., 2002, Tyre and Vehicle Dynamics (Oxford: Butterworth Heinemann Editions)] into his Magic Formula tyre model to take into account the influence of a number of external overall parameters such as road roughness, weather conditions, suspension characteristics and so on. These scaling factors are important for a correct prediction of tyre–road contact forces, but are not a function of the tyre itself. Changing the point of view, one could say that scaling factors should remain constant for different tyres on the same circuit, with the same weather conditions and with the same car. After characterizing different tyres through indoor tests (that do not consider external overall parameters) and after having identified Pacejka’s coefficients with scaling factors equal to one, several outdoor experimental tests have been carried out to assess the influence of vehicle and road surface conditions on scaling factors. These experimental data allowed us to identify, through a minimization approach, the ‘best’ set of Pacejka’s scaling factors for that vehicle and for that tyre on that track. Scaling factors for equal track and vehicle but different tyres were compared to check whether their values remained constant. To access the validity of scaling factors, a comparison between experimental data, collected on an instrumented passenger car, and MB simulations considering unity and identified scaling factors’ values, were carried out. All experimental data shown in this article come from tests carried out within the VERTEC project, a European founded research project (Task 2.a and 2.b) that puts together knowledge coming from vehicle manufacturers (Volvo, Porsche and Centro Ricerche Fiat CRF), tyre manufacturers (Pirelli and Nokian Tyres), control logic manufacturers (Lucas Varity GmbH), road maintenance experts (Centres d’Études Techniques de l’Équipement CETE), transport research organizations (Transport Research Laboratory TRL, Swedish National Road and Transport Research Institute VTI) and universities (Helsinki University of Technology HUT, Politecnico di Milano and University of Florence UNIFI).  相似文献   

17.
Knowledge of the current tyre–road friction coefficient is essential for future autonomous vehicles. The environmental conditions, and the tyre–road friction in particular, determine both the braking distance and the maximum cornering velocity and thus set the boundaries for the vehicle. Tyre–road friction is difficult to estimate during normal driving due to low levels of tyre force excitation. This problem can be solved by using active tyre force excitation. A torque is added to one or several wheels in the purpose of estimating the tyre–road friction coefficient. Active tyre force excitation provides the opportunity to design the tyre force excitation freely. This study investigates how the tyre force should be applied to minimise the error of the tyre–road friction estimate. The performance of different excitation strategies was found to be dependent on both tyre model choice and noise level. Furthermore, the advantage with using tyre models with more parameters decreased when noise was added to the force and slip ratio.  相似文献   

18.
SUMMARY

On the basis of the brush-type tyre model the paper considers the interaction between steady-state rolling deformable wheel and flat road surface as well as corresponding force and moment characteristics of the wheel.

At least two zones of sliding, anisotropic dry friction, sliding friction coefficient speed-dependent and instantaneous leap of the friction coefficient when transition from sliding to adhesion zone occurs, have been taken into account, as well as distributed peripheral mass of tyre, elasticity, pseudo-dry friction and damping properties in radial, tangential and lateral directions of the elements at the wheel periphery, including a visco-elastic belt. Vertical force distribution in the contact area is not supposed to be known in advance and follows from the calculation. As a result, sliding zone lengths, distributed forces in contact area, six components of generalized road reaction reduced to the wheel center, and rolling resistance moment are found as functions of vertical load, movement velocity, longitudinal and side slip, friction in contact area with road, stiffnesses, dry friction and damping in the tyre model elements and of distributed peripheral mass.

A computer program developed in Fortran and results of calculations are of particular interest for qualitative analysis including steady rolling of studded tyre and also racing car and aircraft tyres which peripheral mass shows itself in a special way because of great movement velocities.  相似文献   

19.
Temperature is a very important factor controlling rolling resistance of road vehicle tyres. There are at least three different temperatures that may be considered as important factors controlling thermal conditions of the rolling tyre. The most common measure of the thermal conditions during tyre rolling is ambient air temperature. The other two are: pavement temperature and “tyre” temperature. Tyre temperature is the most difficult to establish, as temperatures of different parts of rolling tyres differ considerably, thus there is a problem to obtain representative values. In the authors’ opinion, air temperature is the most universal and reliable parameter to measure. The article presents results obtained in the Technical University of Gdańsk during laboratory and road measurements of different car tyres rolling on different pavements. The knowledge of rolling resistance characteristics is important for modelling car dynamics as well as fuel consumption. It is also necessary to establish proper test conditions in the future standardized on-road method of measuring rolling resistance. The results indicate that generally each tyre and pavement combination is influenced by the air temperature in a unique way, but at the same it is possible to propose some general influence factors that may be used to normalize measurements to the standard temperature of 25 °C.  相似文献   

20.
岩沥青是一种天然沥青改性剂,它具有改善路面的路用性能的特性。以“轮胎驱动式路面功能加速加载试验系统”作为试验平台,添加不同含量的岩沥青改性乳化沥青对微表处混合料进行改良,并进行室内加速加载试验。通过模拟实际道路特点,分析微表处混合料路用性能变化规律,并定量评价岩沥青的含量对其路用性能的影响。研究成果对推动微表处技术的应用与发展具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号