首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
结合客运专线无砟轨道路基的工程结构及我国东北地区季节冻土的工程特点,通过对粗颗粒土的室内冻胀试验,得出随着细颗粒含量的增加,粗颗粒土的持水性和冻胀率都相应增大;当粗颗粒土中小于0.075 mm细颗粒含量为5%时,土样经饱和再排水条件下冻胀率为1.31%。根据哈齐客运专线季节冻土区的地质及气候条件,采用有限元数值方法分别对季节冻土区既有和新建的客运专线无砟轨道路基设置隔热层后的路基温度场进行了对比分析,计算结果表明:对于新建路基,在路基面铺设10 cm厚隔热层和保温护坡措施后路基的保温效果良好,可以起到对路基冻害的预防作用;对于既有路基,采用在路基面(轨道板处除外)和边坡位置铺设隔热层措施,路基的保温效果不明显。  相似文献   

2.
随着“长大深”隧道的发展,越来越多高地热隧道得以建设。高地热作为典型的不良地质之一,不仅会给隧道施工带来不便,还会严重危害隧道结构的安全。为减小高温对高地热隧道的不利影响,首先,调研相关文献,明确了温度与衬砌混凝土强度之间的关系;然后,以西部高原地区某高地热隧道为依托,使用Comsol数值模拟软件建立该隧道的温度场计算模型。通过数值计算得到各工况下衬砌混凝土的平均养护温度,并将其与强度相对应,并从保护衬砌混凝土强度的角度研究了各工况下不同厚度隔热层的作用。研究得到以下结论:(1)根据他人试验结果总结发现,隧道施工时应保证混凝土养护温度低于40℃,否则会严重降低衬砌混凝土的强度;(2)提出高地热环境隧道施工时隔热层的选取方案,55℃以下的地温段,无需使用隔热层;55~65℃地段,推荐使用3 cm隔热层;65~75℃地温段,使用5 cm隔热层;75~85℃地温段,若能保证洞内气温维持在28℃以内,使用5 cm隔热层,否则使用10 cm隔热层;高于85℃的地段,推荐使用10 cm隔热层。  相似文献   

3.
寒区隧道隔热层设计参数的实用计算方法   总被引:1,自引:0,他引:1  
根据冻土学基本理论推导寒区隧道围岩的季节冻结深度和季节融化深度计算公式.根据传热学的热流连续定律,分别计算隧道围岩的热流量及含隔热层和衬砌隧道围岩的热流量;采用当量换算法推导出寒区隧道隔热层厚度及导热系数的计算公式.以青藏铁路风火山隧道为例,采用推导的隔热层厚度及导热系数公式进行计算.结果表明:隧道DK1 159+046断面在2004年需要的隔热层厚度为4.1 cm,导热系数为0.03 W·(m·℃)-1;考虑未来50年升温2.6℃,全隧道铺设厚度为5cm、导热系数为0.03 w·(m·℃)-1的隔热层,在前20年基本保证围岩不融化,在之后的30年围岩可能会融化.隧道实际的隔热层厚度为5 cm,导热系数为0.03 w·(m·℃)-1,2004年实测地温资料表明隧道围岩没有融化.此计算公式在寒区隧道设计的初始阶段,可用于指导隧道隔热层厚度和导热系数的参数设计.  相似文献   

4.
以深季节冻土区在建火渤铁路工程为依托,通过对涵洞温度场的现场监测,分析总结涵洞外侧和洞内温度场分布规律,测试结果表明:(1)涵洞外侧温度场分布曲线随季节变化呈近似正弦分布。(2)冬季低温时,涵洞顶部路基本体温度随深度的增加而逐渐升高,但均为负温,内外温差较小。(3)涵洞外壁温度场呈现出明显的阴阳坡效应,阳坡测点温度较阴坡大1.9℃左右。(4)涵洞洞内各测点温度相差不大,由于风流场作用,涵洞各截面较高温度测点均出现在涵洞涵角处,涵角温度高于其他测点1.2℃左右。测试分析结果可为深季节冻土区涵洞的设计与施工提供参考。  相似文献   

5.
兰新高铁浩门至大梁区间所处地区海拔高,气温低,冻结期长,属于深季节性冻土区。为解决该区间路基冻害问题,依据当地气候条件,运用ANSYS有限元分析软件,对低路堤、零断面换填路基及不同深度处铺设保温材料的路基温度场进行数值模拟,分析路基冻结深度的变化规律和最大冻结深度,为高寒区高速铁路路基冻害防治措施设计提供参考。研究表明:(1)由于兰新高铁浩门至大梁区间海拔高、冬季冻结时间长、气温低等原因,导致路基冻结深度大;(2)零断面换填路基实测地温和数值模拟计算结果基本相符,所选计算模型、参数等可以为其他相同条件断面数值模拟分析采用;(3)铺设保温板路基温度场较未铺设保温板的0℃线上移,冻结深度增加速率变小,最大冻结深度明显减小,路基保温效果较好;(4)由于路基边坡、基床以下部位土层性质、厚度、热物理参数等影响,低路堤最大冻结深度比零断面换填路基大。  相似文献   

6.
研究目的:近年来,在我国高纬度季节冻土区,围岩冻胀导致隧道衬砌开裂、春融期渗漏水等病害时有出现,严重影响隧道和列车运营安全。本文以我国西北地区某铁路线隧道为例,采用现场测试、室内试验、数值模拟等手段研究季节冻土区隧道冬季边墙纵向开裂原因及其主要影响因素。研究结论:(1)修建在强风化砂泥岩地层中的隧道,当围岩含水率为12. 3%、围岩冻结深度达60 cm时,在冬季持续负温作用下,边墙最大拉应力为2. 28 MPa,大于C30混凝土的极限抗拉强度,边墙会出现水平冻胀裂缝,若考虑衬砌承担部分围岩荷载,边墙纵向开裂程度会加剧;(2)冻胀力荷载作用下,衬砌开裂具有对称性、季节性、积累性等特点,裂缝在冬季出现,分布在边墙中间位置,气温回升后,具有收缩性;(3)季节冻土区围岩冻胀力荷载计算宜以围岩冻结圈厚度和含水率为主要指标;(4)本研究成果可供季节冻土区隧道设计、运营维护参考。  相似文献   

7.
采用理论分析、数值计算、室内及现场试验等方法,结合准格尔至朔州铁路梁家坪2号隧道的工程实际,对季节冻土地区强风化砂泥岩季节性冻胀对隧道结构的影响进行了研究。该隧道边墙纵向开裂是由于隧道含水围岩的季节性冻胀所致,对此提出了锚固、注浆、挂网喷混凝土的衬砌开裂整治措施,并指出了现行规范中的不足,即应根据含水围岩冻胀率和围岩冻结深度来综合确定是否考虑冻胀力。  相似文献   

8.
研究目的:冻胀问题是深季节冻土区高速铁路路基面变形控制难点之一。高速铁路对路基变形要求极高,特别是无砟轨道,冻胀变形更增加了其控制难度。鉴于加深高速铁路路基冻胀研究的必要性和紧迫性,本文系统总结近年来季节冻土区铁路路基冻胀的研究进展。研究结论:(1)季节冻土区铁路路基的防冻胀设计方法:德国、法国、日本等国都是通过冻结指数确定冻结深度,在冻结深度范围内填筑非冻胀填料,我国的不同之处在于采用标准冻深计算设计冻深;(2)季节性冻土冻胀形成机理包括水分迁移和成冰作用,冻胀发生三要素是:负温、细粒土和水,控制冻胀的措施主要为三类:保温、改良填料和改良水分,并分别总结介绍其研究成果及进展;(3)展望了未来的研究方向:加强现场监测和仿真分析;(4)本研究结论可为进一步研究高速铁路路基冻胀提供参考。  相似文献   

9.
通过调查兰州至乌鲁木齐高速铁路浩门—大梁区间线路冻害情况,水文地质、工程地质及气象条件,分析涵洞及涵路过渡段冻害产生的原因,并提出冻害整治措施。研究结果表明:兰新高速铁路浩门—大梁区间位于深季节冻土区,冻害多发生于低路堤、浅路堑、零断面换填路基、涵洞及涵路过渡段,且涵洞和涵路过渡段冻胀量较大;发生冻害涵洞为下沉式小型涵;路基和涵路过渡段基床底层及以下部位多为细颗粒含量较多的B组粗颗粒填料,填料含水率约13. 4%~15. 0%,属于弱敏感~敏感性冻胀填料。可采取设置渗水盲沟、入冬前封堵涵洞出入口等措施防治冻胀。对于冻害严重的涵洞及涵路过渡段可在涵洞内壁铺设保温材料,涵路过渡段中设置纵向疏干排水孔、两侧设置保温护道。  相似文献   

10.
在陇海线郑徐段200 km·h-1提速区段上对5座涵顶填方厚度为0.52~0.85 m的涵洞,采用160km·h-1提速列车分别在其上、下行线(上行铺设弹性轨枕,下行铺设普通轨枕)拉锯运行,实测和分析车辆、轨道、涵洞和路基动力响应的各种参数,并仿真分析200 km·h-1提速列车通过涵洞时的动力学性能.结果表明在路基状态良好、道床厚度为30 cm以上时,不管铺设弹性轨枕与否,均能满足200 km·h-1提速列车运行安全性、平稳性和乘坐舒适性的要求;在填方厚度不足1.2 m的涵洞区段,枕下支承刚度存在不均匀现象,其程度受路基状态、涵洞跨度及结构形式的影响,路基状态良好地段的不均匀现象不明显,反之则比较突出;铺设弹性轨枕可调整枕下支承刚度,降低道床振动加速度,但轨枕垂向位移、振动加速度以及钢轨动弯应力有所增大;涵顶的填方厚度能够有效降低涵顶的振动幅值和动力系数,而弹性轨枕对涵顶的振动幅值和动力系数基本没有衰减作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号