首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
为分析钢轨打磨时的摩擦、磨损及疲劳损伤,根据传热学理论,通过热机耦合方法,运用ABAQUS软件建立钢轨打磨有限元模型,以分析不同车速、打磨电机功率和打磨宽度对钢轨表面温度场和应力场的影响。钢轨与砂轮之间摩擦所产生的热量等效为一个移动热源,数值分析磨削过程中钢轨表面的温度、应力及应变状态。结果表明:钢轨打磨是一个快速升温、缓慢降温的过程;高温区温度场、等效应力场均呈以打磨轴线为中心、向四周扩散的椭圆形分布,且打磨高温区深度较浅,打磨产生的高温影响范围有限;钢轨表面最高温度随打磨车速度和打磨宽度的增加而减小,随打磨电机功率的增加而增加,仿真结果与实际打磨情况较为符合。  相似文献   

2.
运用有限元软件ABAQUS,建立车轮纯滑动时钢轨三维热弹性的有限元模型。分析钢轨的温度场及应力场分布,以及不同轴重、不同摩擦系数和不同车轮滑动速度等工况情况对结果的影响。分析表明:钢轨表面温度场呈现细长的条带状,钢轨表面温度变化是一个快速升温,缓慢降温的过程,温度最高区分布在钢轨表面;钢轨应力最大处不在钢轨表面,应力变化图中有两个峰值;钢轨的最大温度和应力都随着轴重、摩擦系数和滑动速度的增加而增加。  相似文献   

3.
基于砂轮打磨钢轨的原理建立磨粒与钢轨接触的几何模型和受力模型,分析磨粒切削深度与打磨设定功率即钢轨打磨车电机输出功率的理论关系;依据磨粒分布及其突出高度的统计规律和磨粒切削深度与参与切削磨粒数目及电机输出功率的关系,仿真研究被测区域的钢轨打磨效果,并与试验结果进行对比。结果表明:切削深度的增加会引起参与切削磨粒数目的增加,而参与切削磨粒数目的增加亦会增加测试区域中打磨区域的重叠;受钢轨本身廓形曲率变化的影响,在电机输出功率相同而砂轮摆角不同时,钢轨的打磨结果也不相同;砂轮在钢轨轨顶部位的打磨会形成最宽的打磨带以及最大的打磨横断面面积,而轨肩部位的打磨带则较窄且打磨横断面面积较小;仿真与试验结果吻合,说明基于磨粒模型预测打磨砂轮的实际打磨性能是可行的。  相似文献   

4.
钢轨砂带打磨过程会生成大量磨削热,热量堆积易导致钢轨温度持续升高而影响打磨质量。为揭示打磨温度与工艺参数间关系,针对钢轨砂带打磨弹性-曲面接触特点,从瞬时点热源温度场理论出发,结合弹性赫兹接触理论建立了单接触轮及多接触轮的磨削温度数学模型。通过数值仿真分析了温度曲线沿时间、轨向位置的变化过程。将结果与现有有限元分析结果对比,验证了模型的有效性和适用性。进一步仿真分析结果表明,砂带打磨过程各点温度呈快速升温、缓慢降温趋势;提高列车打磨速度、增加磨头接触轮数量和接触轮间距能有效缓解热量累积;以60 kg/m钢轨为例,R13弧段为易烧伤区域,须依据理论模型制定适当的打磨工艺参数避免钢轨打磨时发生轨面发蓝、灼伤等二次损伤。  相似文献   

5.
针对钢轨打磨施工过程中产生的大量磨削热会使磨削区域温度持续升高,影响钢轨打磨质量问题,基于钢轨打磨施工基本原理,建立钢轨打磨单磨粒磨削温度模型和多砂轮磨削温度模型,分别计算不同打磨参数下的打磨温度。为实现对不同打磨参数下打磨温度的实时预测,以不同打磨参数及其对应的打磨温度为样本,采用Kriging插值方法,建立钢轨打磨温度关于打磨参数的预测模型。预测误差分析结果表明,该预测方法的最大预测误差为4.5%,可以应用于钢轨打磨列车打磨参数在线优化系统中。  相似文献   

6.
首先分析了铝热焊接头焊缝低塌的原因,然后通过现场试验测量初打磨后接头的最高温度、不同终打磨温度下焊缝中心低塌量以及接头冷却过程中温度的变化,分析初打磨轨顶焊筋的预留打磨量、终打磨温度对铝热焊接头焊后平直度的影响.结果表明:焊接60 kg/m钢轨铝热焊接头时,初打磨后轨顶焊筋应预留1.3 mm以上的打磨量;终打磨温度越低焊缝低塌量越小,随终打磨温度降低焊缝低塌量减小幅度逐渐变缓,终打磨温度为300℃时焊缝低塌量较小,终打磨温度低于200℃时焊缝无低塌现象;采用"初打磨+终打磨"的打磨方式可避免铝热焊接头焊缝低塌,提高打磨效率.  相似文献   

7.
线路的钢轨在列车运行的磨耗过程中,不仅轨头的几何形状会发生改变,轨面还会出现波纹等缺陷,严重影响列车运行和运行舒适度。为修复钢轨断面,可采用铣、磨、刨等方法对钢轨进行修理。刨切系统一般只用于特殊的钢轨维修,很少应用。传统的方法是采用移动式或固定式打磨列车或打磨机。但是,这种打磨设备本身及其应用存在不少缺点和风险。首先是其打磨速度很慢,打磨设备必须在钢轨上来回走行多次才能把轨头断面修复到规定要求。其次,采用打磨设备无法修整钢轨断面;打磨设备打磨钢轨时喷出的火花会增加火灾危险,如果砂轮破裂,还可能伤及作业人员,…  相似文献   

8.
考虑到钢轨打磨列车磨石对60kg/m钢轨轨头不同区域打磨能力的差异,建立轨头不同弧段打磨量与打磨功率的线性关系,采用三次样条曲线对钢轨轨头型面进行精确拟合;针对GMC-96打磨列车,考虑到轨头不同弧段对打磨精度的影响、轨头各个区域打磨面积不同,采用MATLAB编程优化得到预打磨磨石的最终排布角度;基于打磨深度一致性提出磨石打磨功率的制定方法,设计较优的钢轨预打磨模式;根据磨石角度及打磨面积确定轨头上每个磨石的具体位置,获得钢轨打磨后型面。基于打磨前后钢轨型面的对比分析,提出评价钢轨打磨质量的方法;磨石打磨功率能否自由设定对钢轨打磨深度一致性有重要影响。  相似文献   

9.
利用钢轨打磨砂轮实验台研究4种酚醛树脂作为结合剂制得的钢轨打磨砂轮的耐磨性及磨削性能。通过在N2气氛下的TG曲线分析不同树脂的热稳定性,使用体视显微镜观察4种树脂砂轮的微观形貌。结果表明,2123#树脂耐高温性能最差,所制备砂轮对工件磨耗量最小,磨耗率最大,耐磨性最差;0321SP#树脂耐高温性能最好,所制备砂轮对工件磨耗量最大,磨耗率最小。应选择耐高温性能好,高温强韧性匹配较好的树脂作为制备钢轨打磨砂轮的结合剂。  相似文献   

10.
高速铁路钢轨打磨关键技术研究   总被引:2,自引:0,他引:2  
根据我国高速铁路上运行车辆的车轮型面设计钢轨的预打磨轨头廓面.按照该预打磨轨头廓面对钢轨进行预打磨,可有效改善轮轨的接触状态.给出了适用于不同车轮型面的钢轨预打磨深度理论设计值以及适用于LMA和S1002G车轮型面的钢轨预打磨轨头廓面.关于预打磨后的实际轨头廓面与预打磨设计廓面的误差,在轨距角部位应控制在-0.1~0.3 mm范围内.建议我国高速铁路的钢轨打磨周期为每30~50 Mt通过总重打磨1次,对于无砟轨道取上限,有砟轨道取下限;关于60kg·m-1钢轨的预打磨深度,在轨距角部位应达到0.8~1.5 mm,在主要轮轨接触部位应大于0.3 mm;钢轨打磨后的表面粗糙度应小于10μm;采用48磨头打磨车时应打磨3~4遍,采用96磨头打磨车时应打磨2遍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号