首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
随着汽车安全性能要求越来越高,自动紧急制动系统(Autonomous Emergency Braking,AEB)等主动安全配置在汽车上应用越来越广泛。本文针对碰撞前车辆AEB功能的启用对汽车被动安全阶段(100%正面碰撞,FRB)假人离位及损伤可能产生的影响进行探索研究。研究结果表明:AEB启动自动紧急制动功能,乘员假人的头部、颈部、胸部、骨盆部位会相对车辆有一定的前倾运动。并且车辆AEB自动紧急制动功能启动的情况下发生100%正面碰撞,驾驶员损伤值的增高均早于碰撞前车辆未配备AEB功能车辆驾驶员的损伤值,且最高损伤值小于碰撞前车辆未配备AEB功能车辆驾驶员的损伤值,对于骨盆部位则影响不大。碰撞前AEB自动紧急制动系统功能的启用会导致假人有一定的前倾离位,但不一定导致碰撞后假人损伤最高值的增大。  相似文献   

2.
Riding Behaviour is found to be the main cause of Powered Two-Wheeler (PTW) crashes in more than90% of the crash events. The high percentage of PTW crashes resulting in fatalities has sought a serious need for research to examine risky riding Behaviour. A widely used instrument for measuring the self-reported riding Behaviour of PTW riders is the Motorcycle Rider Behaviour Questionnaire (MRBQ). In this study, exploratory factor analysis of the MRBQ revealed a four-factor solution viz., traffic errors, control errors, speed violations, and stunts. Despite the popularity of MRBQ, it is capable of covering only a small fraction of the large number of elements that affect the riding Behaviour. Many other elements remain overlooked in the analysis, resulting in unobserved heterogeneity. Therefore, the present study uses a random parameter negative binomial (RPNB) model to minimize the effect of unobserved heterogeneity. It was inferred from the RPNB model that variables like gender, control error, and speed violation have a randomly distributed regression coefficient. Further, it is found that traffic errors are the most significant predictor of crash risk. Additionally, results depict that male riders are positively associated with crashes, and they are more likely to involve in crashes as compared to female riders. The finding of this paper will be valuable for policymakers and decision-makers to improve the rider training program, licensing system, and design road safety campaigns.  相似文献   

3.
Side-impact collisions are the second leading cause of death and injury in the traffic accidents after frontal crashes. Side-impact airbags, side door bars and other protection techniques have been developed to provide occupant protection. To confirm the effectiveness of protection equipment installed in vehicles, studying the degree of impact is fundamental to understand the effect of automobile collisions on the human body. Therefore, the dynamic response of the human body to traffic accidents should be analyzed to reduce the level of occupant injuries. Generally, the experimental method is complex and expensive. Recently, numerical crash simulations have provided a valuable tool for automotive engineers. This work presents full-scale and sled side-impact test finite-element (FE) models - based on the Federal Motor Vehicle Safety Standard No. 214 - that simulate a side-impact accident. The crash simulations utilized the LS-DYNA finite-element code. The human body's dynamic response to crashes is discussed herein. Additionally, occupant injuries were measured. To verify the accuracy of the proposed crash test and sled test FE models, simulation results are compared with those obtained from experimental tests. The comparison results indicate that the proposed crash test and sled test FE models have considerable potential for assessing a vehicle's crash safety performance and assisting future development of safety technologies.  相似文献   

4.
Motor vehicles with advanced safety technologies are rapidly entering the marketplace and the impact of new features are transforming safety on roadways. Among the several safety related technologies currently available in the market, this paper aims to forecast the reduction in crashes with gradual adoption of vehicles with lane departure prevention (LDP) technology. Crash data for the state of Alabama from 2014 to 2016 were used to evaluate the safety benefits of LDP technology. In Alabama, 75% of single-vehicle crashes are the result of lane departure. A 20% effective LDP system implies, whereby an LDP system would prevent a vehicle from exiting a roadway on 20% of applicable instances, would reduce 2.7% and 16.4% of the relevant single-vehicle lane departure (SVLD) crashes by 2020 and 2045 respectively. With increase in the effectiveness of the technology, a greater reduction in crashes was observed. With 100% effectiveness, this technology can prevent 66.5% of SVLD crashes by year 2045. This study presents the first estimations of the number of crashes that could be reduced using LDP and therefore could have significant impacts on public and industry adoption rates of the technology. The results of this study influence policy making and regulatory approaches to improving motor vehicle safety and further recommend education and outreach activities to increase awareness on the benefits of LDP technology.  相似文献   

5.
基于未来出行交通事故场景研究数据库中的乘用车追尾卡车事故,分析并提出了以卡车为目标物的乘用车自动紧急制动系统的典型测试工况。采用K-means聚类算法得出可代表实际卡车的目标物颜色,基于事故数据分析提取卡车目标物尾部特征参数,设计并制作了一种新型的具有与真实车辆反射特性和机器视觉识别特性接近的重型厢式卡车目标物。卡车目标物静止,测试车辆分别以45、50、55、60 km/h的速度进行100%重叠自动紧急制动系统测试,验证了该目标物的可行性和有效性。可为车辆主动安全相关标准法规研究提供数据支撑,推动车辆主动安全测试技术的发展。  相似文献   

6.
文章介绍了汽车一体化安全定义与组成,阐述了碰撞预警技术其通用的系统构架以及碰撞预警安全技术的应用现状.汽车一体化安全把汽车被动安全与主动安全有机结合,充分发挥主、被动安全措施的最佳效用,其代表技术是汽车碰撞预警安全,该技术已成为汽车安全领域新的研究热点和发展趋势.  相似文献   

7.
The Autonomous Emergency Braking (AEB) systems have been actively studied for the safety enhancement and commercialized for the past few years. Because the driver tends to overly rely upon active safety systems, AEB needs to be designed to reflect the real road situations such as various road slope and friction coefficient. In this study, an AEB control algorithm is proposed to compensate for the effects of the slope and the friction of road. Based on the maximum possible deceleration for the real road conditions, the minimum braking distance is described with margin parameters for AEB activation control. The deceleration controller with a feedforward term is designed to avoid the collision during AEB operation on real road conditions. The proposed algorithm is validated in simulations first and the experimental verification is performed in the various slope conditions.  相似文献   

8.
介绍了碰撞预判技术及其通用的系统设计方案,着重从该系统所用雷达系统的研发、新式被动安全装置的优化与应用以及系统集成3个方面详细分析了其中的关键技术,并指出了当前发展碰撞预判系统的时机与光明前景.  相似文献   

9.
Intersection safety continues to be a crucial issue throughout the United States. In 2016, 27% of the 37,461 traffic fatalities on U.S. roadways occurred at or near intersections. Nearly 70% of intersection-related fatalities occurred at unsignalized intersections. At such intersections, vehicles stopping or slowing to turn create speed differentials between vehicles traveling in the same direction. This is particularly problematic on two-lane highways. Research was performed to analyze safety performance for intersections on rural, two-lane roadways, with stop control on the minor roadway. Roadway, traffic, and crash data were collected from 4148 stop-controlled intersections of all 64 Parishes (counties) statewide in Louisiana, for the period of 2013 to 2017. Four count approaches, Poisson, Negative Binomial (NB), Zero-inflated Poisson (ZIP) and Zero-inflated Negative Binomial (ZINB) were used to model the number of intersection crashes for different severity levels. The results indicate that ZIP models provide a better fit than all other models. In addition to traffic volume, larger curve radii of major and minor roads and wider lane widths of major roads led to significantly smaller crash occurrences. However, higher speed limits of major roads led to significantly greater crash occurrences. Four-leg stop-controlled intersections have 35% greater total crashes, 49% greater fatal and injury crashes, and 25% greater property damage only (PDO) crashes, relative to three-leg intersections.  相似文献   

10.
Globally, safety has become an increasingly important issue in the automotive industry. In an attempt to reduce traffic fatalities, UNECE launched a new EU Road Safety Program which aims to decrease the number of road deaths by half by 2020. AEB (Autonomous Emergency Braking) is a very effective active safety system intended to reduce fatalities. This study involves the design of a multi-sensor data fusion strategy and decision-making algorithm for AEB pedestrian. Possible collision avoidance scenarios according to the EuroNCAP protocol are analyzed and a robust pedestrian tracking strategy is proposed. The performance of the AEB system is enhanced by using a braking model to predict the collision avoidance time and by designing the system activation zone according to the relative speed and possible distance required to stop for pedestrians. The AEB activation threshold requires careful consideration. The test results confirm the advantages of the proposed algorithm, the performance of which is described in this paper.  相似文献   

11.
Assessment of traffic safety is an essential study in transportation engineering. In a developing country like India, around 150,000 people die in road crashes every year. Furthermore, at uncontrolled median openings, the severity of road crashes is higher due to the presence of impatient U-turning road users who don't obey the rule of priority. Traditionally, road crash data have been used since long to analyze traffic safety. However, in developing countries, the main drawback of this conventional method is limited availability of accident data as very few accidents get reported. Moreover, the accuracy of these reported data is questionable. Therefore, now-a-days, various surrogate traffic safety measures like Post Encroachment Time (PET), and Time to Collision (TTC) are being used to examine the safety of road users. Among them, PET is regarded as the most consistent, and most widely used safety indicator. Therefore, in the present study, PET across different traffic volume levels has been determined. Videography data has been collected from selected median openings located on six-lane divided urban roads. PET values for different traffic volumes, and different category of vehicles have been analysed in detail. Further, the distribution of PET values across the full width of road has also been studied. Concept of critical speed is introduced which is compared with conflicting speed to assess unsafe conflicts and determine a critical PET. Finally, regression models have also been proposed with good levels of accuracy to determine the PET values for various category of vehicles travelling at different conflicting speeds.  相似文献   

12.
Pedestrians are the most vulnerable road users; thus, understanding the primary factors that lead to pedestrian crashes is a chief concern in road safety. However, owing to the limitations of crash data in developing countries, only a few studies have evaluated the comprehensive characteristics of pedestrian crashes, specifically on different road types. This study attempted to develop pedestrian crash frequency and severity models on national roads by using the road characteristics and built environment parameters, based on the road crash data (2016–2018) that involved pedestrians in Metro Manila, Philippines. Remarkable findings included primary roads, presence of footbridges, road sections with bad surface conditions, and increased fractions of commercial, residential, and industrial roads, which exhibited a greater likelihood of pedestrian crashes. Crashes involving elderly pedestrians, heavier vehicles, late-night hours, fair surface conditions, and open spaces were associated with increased likelihoods of fatal outcomes. Essentially, this study provides a macroscopic perspective in understanding the factors associated with the severity and frequency of pedestrian crashes, and it would aid the authorities in identifying proper countermeasures.  相似文献   

13.
The objective of this research is to identify factors associated with crashes due to overcorrection or oversteering of vehicles. Crash data was collected from 2011 to 2013 for the State of North Carolina in the United States. Logistic regression modeling was used to analyze crash data because of the dichotomous nature of the dependent variable (overcorrection or oversteering). The crash involvement due to overcorrection or oversteering of a vehicle decreased as the age of the driver increased. Drivers are 2.22 times more likely to overcorrect or oversteer when ill, 3.44 times more likely to overcorrect or oversteer when under fatigue, and 1.61 times more likely to overcorrect or oversteer when fallen asleep compared to normal physical conditions. Overall, driver characteristics and speed limit tend to play a major role in overcorrection or oversteering of vehicles. Programs to reduce impaired driving might help in the reduction of overcorrection or oversteering related crash fatalities or injuries. Additionally, training and driver education programs focusing on identified factors associated with crashes due to overcorrection or oversteering of vehicles will benefit drivers on how to respond during emergency or panic situations.  相似文献   

14.
Pedestrian safety is generally assessed using frequency of crashes, based on historical data, for a given transportation facility. However, the lack of good and reliable crash data has hampered its apposite analyses and in evaluating the effectiveness of pedestrian safety programs. To overcome this gap, traffic conflict technique (TCT) which relies mainly on the observations of critical traffic situations for safety analysis were developed. However, the applicability of TCTs and related measures under varying non-lane based heterogeneous traffic conditions prevailing in countries such as India is not widely explored. This paper attempts to evaluate pedestrian safety at urban midblock crosswalk using different surrogate safety measures, including vehicle crossing speed, post encroachment time (PET), yielding compliance of driver as well as pedestrian, and conflict rate. The number of conflicts were observed to increase as the average vehicle crossing speed increases, indicating that pedestrians are extremely vulnerable while crossing the road. The PET value for the smaller vehicles, such as two-wheelers and three-wheelers, is recorded to be lower than the heavy vehicles, such as trucks and buses. With the addition of one lane, there is a significant decrease in the PET value. The average PET values for the vehicle on eight-lane divided road is less than the six-lane divided, four-lane divided, and two-lane undivided roads. Further, the yielding compliance of the driver as well as of the pedestrian depends on the crossing speed of the approaching vehicle and the type of road geometry. Further, the rate and severity of conflicts increased with a decrease in the pedestrian crossing speed. The yielding behaviour of the drivers as well as the pedestrian's yielding compliance varies by location, highlighting the effect of individual and demographic characteristics on pedestrian crossing behaviour.  相似文献   

15.
Despite many advances in vehicle safety technology, traffic fatalities remain a devastating burden on society. With over two-thirds of all fatal single-vehicle crashes occurring off the roadway, run-off-road (ROR) crashes have become the focus of much roadway safety research. Current countermeasures, including roadway infrastructure modifications and some on-board vehicle safety systems, remain limited in their approach as they do not directly address the critical factor of driver behaviour. It has been shown that ROR crashes are often the result of poor driver performance leading up to the crash. In this study, the performance of two control algorithms, sliding control and linear quadratic control, was investigated for use in an autonomous ROR vehicle recovery system. The two controllers were simulated amongst a variety of ROR conditions where typical driver performance was inadequate to safely operate the vehicle. The sliding controller recovered the fastest within the nominal conditions but exhibited large variability in performance amongst the more extreme ROR scenarios. Despite some small sacrifices in lateral error and yaw rate, the linear quadratic controller demonstrated a higher level of consistency and stability amongst the various conditions examined. Overall, the linear quadratic controller recovered the vehicle 25% faster than the sliding controller while using 70% less steering, which combined with its robust performance, indicates its high potential as an autonomous ROR countermeasure.  相似文献   

16.
There is a growing interest in the application of the machine learning techniques in predicting the motorcycle crash severity. This is partly due to a progress in autonomous vehicles technology, and machine learning technique, which as a main component of autonomous vehicle could be implemented for traffic safety enhancement. Wyoming's motorcycle crash fatalities constitute a concern since the count of riders being killed in motorcycle crashes in 2014 was 11% of the total road fatalities in the state. The first step of crash reduction could be achieved through identification of contributory factors to crashes. This could be accomplished by using a right model with high accuracy in predicting crashes. Thus, this study adopted random forest, support vector machine, multivariate adaptive regression splines and binary logistic regression techniques to predict the injury severity outcomes of motorcycle crashes. Even though researchers applied all the aforementioned techniques to model motorcycle injury severities, a comparative analysis to assess the predictive power of such modeling frameworks is limited. Hence, this study contributes to the road safety literature by comparing the performance of the discussed techniques. In this study, Wyoming's motorcycle crash injury severities are modeled as functions of the characteristics that give rise to crashes. Before conducting any analyses, feature reduction was used to identify a best number of predictors to be included in the model. Also to have an unbiased estimation of the performance of different machine learning techniques, 5-fold cross-validation was used for model performance evaluation. Two measure, Area under the curve (AUC), and confusion matrix were used to compare different models' performance. The machine learning results indicate that random forest model outperformed the other models with the least misclassification and higher AUC. It was also revealed that a dichotomous response variable, with fatality and incapacitation injury in one category, along with all other categories in another group would result in a lower misclassification rate than a polychotomous response variable. This might result from the nature of motorcycle crashes, lacking a protection compared with passenger cars, preventing machine learning technique to get trained properly. Moreover, the most important variables identified by the random forest model are those related to the operating speed, resentful other party, traffic volume, truck traffic volume, riding under the influence, horizontal curvature, wide roadway with more than two lanes and rider's age.  相似文献   

17.
In March 2018, an Uber-pedestrian crash and a Tesla's Model X crash attracted a lot of media attention because the vehicles were operating under self-driving and autopilot mode respectively at the time of the crash. This study aims to conduct before-and-after sentiment analysis to examine how these two fatal crashes have affected people's perceptions of self-driving and autonomous vehicle technology using Twitter data. Five different and relevant keywords were used to extract tweets. Over 1.7 million tweets were found within 15 days before and after the incidents with the specific keywords, which were eventually analyzed in this study. The results indicate that after the two incidents, the negative tweets on “self-driving/autonomous” technology increased by 32 percentage points (from 14% to 46%). The compound scores of “pedestrian crash”, “Uber”, and “Tesla” keywords saw a 6% decrease while “self-driving/autonomous” recorded the highest change with an 11% decrease. Before the Uber-incident, 19% of the tweets on Uber were negative and 27% were positive. With the Uber-pedestrian crash, these percentages have changed to 30% negative and 23% positive. Overall, the negativity in the tweets and the percentage of negative tweets on self-driving/autonomous technology have increased after their involvement in fatal crashes. Providing opportunities to interact with this developing technology has shown to positively influence peoples' perception.  相似文献   

18.
This study aims to determine spinal injury patterns and identify crash factors commonly associated with serious spinal injury as a result of motorcycle crashes. Data was retrospectively collected from motorcyclists sustaining spinal injuries from road crashes treated at Kuala Lumpur Hospital, Malaysia, over the 5-year period from 2005 to 2009. Each patient's injuries were analyzed by reviewing his or her medical records for radiographic imaging and computed tomography scans.A total of 151 patients were included in this study, of which, males accounted for over 87%. The first lower lumbar (L1) was the most commonly injured vertebral level, followed by the adjacent thoracic vertebra (T12). Fracture to the vertebral body without dislocation was found to be the most frequently observed spinal injury pattern. Injury severities for a majority of patients (65%) were measured at Maximum Abbreviated Injury Scale (MAIS) of 2. Serious spinal injury was associated with thorax or upper-extremity injury.Prevalence of lumbar spinal injury in the study reflects a predominantly low-speed crash among the motorcyclist in the region. Motorcyclists are at greater odd to sustain severe spinal injury when directly striking an object compare to striking the ground during the crash event.  相似文献   

19.
Bus right hook (BRH) crashes at intersections are one of the most common types of crashes for bus carriers, which accounted for as high as 16% of fatal and injury crashes involving large buses at intersections in Taiwan. A BRH crash occurs when a bus and another vehicle traveling in the same direction head into an intersection, but the bus driver makes a right turn across the path of the through-moving vehicle, and both vehicles collide. This study responds to the research needs to identity factors associated with BRH crashes by utilizing in-vehicle data recorder (IVDR) data. A four step analysis procedure was developed, including (1) video data coding, (2) crash sequence analysis to identify crash contributing factors, (3) a case-control study to examine the relationship between the crash contributing factors and crash occurrence, and (4) modeling crash risk in terms of the crash contributing factors to better understand the crash generating process. This study first identified the existence of driver unattended time as the time between when the driver last checked the right back mirror to finally steering for a right turn, indicating the time period wherein the driver did not track the through vehicle on the right side using the right back mirror. It was found that BRH crashes could be attributed to the concurrence of unattended time and the speed difference between the bus and through vehicle. Several recommendations are discussed based on the results to further develop countermeasures to reduce this type of crash.  相似文献   

20.
This paper focuses on identifying crash risk factors associated with injury severity of teen drivers. Crash data obtained from the Highway Safety and Information System (HSIS) for the entire state of North Carolina, for years 2011 to 2013, was used for analysis and modeling. Among all the crashes during the study period, a total of 62,990 crashes involving teen drivers (15 to 19?years) were analyzed. A partial proportionality odds model was developed to identify factors contributing to injury severity of teen drivers. The results obtained indicate that teen drivers driving sports utility vehicles and pickup trucks are more likely to be severely injured when compared to teen drivers driving passenger cars. Teen drivers are more likely to be severely injured on weekdays, particularly during peak hours. The chances of teen drivers getting involved in severe injury crashes on Tuesdays and Fridays is higher when compared to Sundays. Age, gender, road configuration, terrain, adverse weather condition, and access control are observed to have a significant effect on teen driver's injury severity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号