首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
针对时速160 km动车组在单线隧道内列尾横向晃动问题,提出列尾气流涡脱效应引起车体涡激振动而导致列尾横向晃动的机理,研究了车辆悬挂参数改进等相关抑制措施;根据某动力车结构参数,建立车辆横向动力学模型,结合半经验非线性涡激振子模型,实现涡激振动时车辆流固耦合横向动力学计算。计算结果表明:单线隧道内动车组列尾较大的横向涡激力以及涡激频率与车体蛇行频率共振是引起晃车的主要原因;减小横向涡激力、提高车辆蛇行运动稳定性是减小晃车幅值的有效措施;针对该动力车,需避免较低等效锥度的轮轨接触,以防车辆一次蛇行导致涡激振动加剧;当转向架抗蛇行减振器阻尼由800 kN·s·m-1减小到400 kN·s·m-1,涡激共振时车体后端横向振动加速度幅值减小40%;车辆二系横向悬挂采用天棚阻尼半主动控制时,可以有效减小涡激共振区车体横向振动幅值,并能兼顾车体前后端横向平稳性。   相似文献   

2.
为了研究抗蛇行减振器参数匹配规律以兼顾不同轮轨接触状态下高速列车横向稳定性,针对国内运行典型结构参数的高速列车,建立车辆横向动力学简化模型,分别考虑到高、低锥度两种轮轨接触状态下车辆的横向稳定性,采用多目标优化方法对抗蛇行减振器刚度和阻尼值进行多参数优化,并分析最优抗蛇行减振器参数的影响因素. 结果表明:优化的抗蛇行减振器阻尼值主要取决于车辆二系横向阻尼,得出了两类阻尼值的抗蛇行减振器选配类型,即当二系横向阻尼较小时,转向架单侧需匹配较小阻尼值600~1000 kN?s?m?1,或当二系横向阻尼较大时,匹配大于4 000 kN?s?m?1的抗蛇行减振器;抗蛇行减振器刚度显著影响不同轮轨接触状态下的车辆稳定性,减小抗蛇行减振器刚度有利于低锥度状态车辆稳定性,反之亦然.   相似文献   

3.
实时调整架悬电机参数,以提高转向架的蛇行运动稳定性;建立了电机架悬转向架动力学模型,包含2个轮对、1个构架和2个电机,轮对和构架间考虑了一系悬挂装置,构架和车体间的二系悬挂装置考虑了空气弹簧和抗蛇行减振器,将2个电机考虑为一个整体并与构架弹性连接;基于高速转向架系统模型的最小阻尼比来寻找电机最优横移频率,分析了转向架参数对电机最优横移频率的影响,并针对该型转向架提出了一种能够提升蛇行运动稳定性的电机主动架悬反馈控制策略;通过开展电机主动架悬的高维车辆SIMPACK/SIMULINK联合仿真,对电机架悬控制策略进行了验证。研究结果表明:电机最优横移频率会随轮轨等效锥度的增大而增大,当轮轨等效锥度由0.3增大至0.6时,电机最优横移频率会由4.5 Hz增大到7.0 Hz;不同的等效锥度、电机质量和一系纵向刚度下,电机最优横移频率和转向架蛇行频率的差值均为1.0~1.5 Hz,因此,可通过检测转向架的蛇行频率再减去1.0~1.5 Hz获得电机最优横移频率,用电机和构架的相对位移和速度作为反馈信号,使电机能够实时获得最优架悬参数,成为理想的动力吸振器;高维数值仿真显示,电机主动架悬相比电机被动...  相似文献   

4.
为合理优化匹配悬挂参数以提升高速机车动力学性能,针对某高速机车,采用虚拟激励法计算频域横向平稳性指标,提出了考虑频域横向平稳性和稳定性多目标性能的关键悬挂参数多参数协同优化方法;分别以2种抗蛇行减振器布置方式和3种轮轨接触状态运行工况为例,验证了该方法对机车横向动力学性能的提升效果.结果表明:低轮轨接触锥度工况机车一次蛇行稳定性较差,尤其采用抗蛇行减振器斜对称布置方式,机车后司机室横向平稳性显著变差;对于低锥度工况,需以提高机车稳定性为优化目标,而高锥度工况则更需关注其横向平稳性;为兼顾不同轮轨接触条件下机车动力学性能,以提高线路适应性,机车一系纵向刚度、抗蛇行减振器阻尼和二系横向减振器阻尼值在文中给定的优化范围内应尽量选取较小值,建议分别选取12 kN/mm、600 kN·s/m和25 kN·s/m.  相似文献   

5.
推导了与轮对纵向、横向移动速度和摇头速度相关的三个一阶微分方程,并将其作为轮对蛇行运动的激励,代入考虑转向架纵向、横向和摇头运动的柔性转向架二阶微分方程中.使用该模型计算三种动车组在轮对初始横移量3 mm下的构架和轮对蛇行频率及在构架1~8 mm横移量下的构架蛇行频率,计算结果表明:CRH2和CRH5型车的蛇行频率较为接近且低于CRH3型车的蛇行频率.使用推导的动力学微分方程对国内某型时速350 km动车组进行仿真计算,结果表明:当运行速度为350 km/h,轮对初始横移量为3 mm,等效锥度为0.14时的构架蛇行频率为3.0 Hz,说明该型动车组实测构架端部加速度出现的2.9 Hz振动频率为构架蛇行频率.研究结果表明:该二阶微分方程能够反映车辆在实际车轮踏面锥度的下蛇行运动规律.  相似文献   

6.
根据轮轨系统坐标系间的变换关系,在准静态条件下建立了轮轨接触斑三维受力分析模型,推导了考虑轮对摇头角与轮轨蠕滑力的三维脱轨系数计算公式,得到了脱轨临界状态时三维脱轨系数临界值的计算方法;以LMA车轮踏面与CHN60钢轨廓形为例,分析了轮对摇头角与摩擦因数对三维脱轨系数临界值的影响规律,并与Nadal脱轨系数临界值进行了对比;为简化三维脱轨系数的计算方法,根据Shen-Hedrick-Elkins蠕滑模型讨论了不同轮对摇头角、摩擦因数与垂向力条件下Kalker线性合成蠕滑力与3倍库伦摩擦力间的比值关系;分析了横向蠕滑力与纵向蠕滑力的比值随轮对摇头角与摩擦因数的变化规律,提出了一种准静态条件的三维脱轨系数简化计算方法,并与精确公式计算结果进行了对比。分析结果表明:与三维脱轨系数临界值相比,当轮对摇头角在1.5°以内时,纵向蠕滑力在切向力中的占比要明显大于横向蠕滑力,造成Nadal脱轨系数临界值具有一定的保守性,但在轮对摇头角较大时,横向蠕滑力在切向力中的占比达到了90%以上,Nadal与三维脱轨系数临界值计算结果基本相同;车轮脱轨临界状态下轮轨接触斑内已达到纯滑动状态,横向蠕滑力和纵向蠕滑力的比值基本不受摩擦因数影响,并与轮对摇头角存在强线性关系;与精确公式相比,三维脱轨系数简化计算方法的误差在±5%以内,可以满足工程应用的要求。  相似文献   

7.
为了分析轮对等效锥度对车辆动力学性能的影响,采用设计不同等效锥度磨耗型踏面和锥形踏面的方法,通过轮轨接触和车辆动力学计算,分析了等效锥度对车辆临界速度和曲线通过性能的影响.结果表明,车辆临界速度并不严格地与等效锥度平方根成反比,而是存在临界速度较高的小等效锥度区域,太小、太大的等效锥度均会导致临界速度迅速降低.等效锥度随轮对横移的增大而增大有利于提高曲线通过性能,并可缓解轮缘磨耗.因此,在轮对小幅横移时等效锥度可以取较小值,并随轮对横移量的增大而增大,可兼顾车辆临界速度与曲线通过性能的要求.  相似文献   

8.
复兴号CR400BF高速动车组动力转向架的牵引电机采用特有的四点弹性架悬方式, 在电机和构架之间安装有横向液压减振器和横向止挡, 首次采用牵引电机作为动力吸振器来控制转向架蛇行运动稳定性和蛇行频率, 从而避免引起车体弹性模态共振; 考虑悬挂参数和轮轨接触非线性, 建立了复兴号动车组非线性多刚体动力学仿真模型, 通过悬挂模态计算和动力学时域仿真, 分析了关键参数对动车蛇行运动的影响规律; 基于将电机作为动力吸振器的原理, 优化了电机节点横向刚度和横向减振器阻尼; 考虑动车组运营中的轮轨匹配随机因素, 组合400种轮轨随机匹配状态, 仿真分析了动车的动力学性能; 开展动车组长期线路动力学跟踪试验, 研究了动力转向架蛇行运动演变规律。仿真与试验结果表明: 牵引电机弹性架悬下的构架横向加速度频谱图从以蛇行频率为主频的单峰值变化为主频在蛇行频率两侧的双峰值, 说明电机起到了动力吸振器的作用; 将电机作为动力吸振器能够提高动车蛇行运动稳定性, 具有不同等效锥度的典型轮轨匹配下非线性临界速度超过500 km·h-1; 动车蛇行运动最高频率被控制在6 Hz附近, 远离车体中部菱形弹性模态频率8.5 Hz, 避免了转向架蛇行运动激起车体弹性共振; 动车组在轨道随机不平顺激扰下, 构架端部横向加速度小于0.5g, 平稳性指标小于2.5, 轮轴横向力和脱轨系数等运行安全性指标满足要求。   相似文献   

9.
针对高速动车通过曲线时轮轨磨耗问题,利用现场实际测量的不同磨耗阶段动车车轮型面,建立高速列车通过曲线的多体动力学模型和曲线段轮轨接触的有限元模型,计算了不同磨耗程度车轮通过曲线时的磨耗功率、垂向、横向动载荷变化规律,并且对比了动载荷和理论载荷下轮轨间接触等效应力.分析结果表明:动车通过曲线时轮轨间的磨耗功率、横向力和横向蠕滑力等参数都随着车轮型面磨耗程度的增大而增大;标准型面到踏面磨耗量达到0.54 mm的过程为剧烈磨耗阶段,踏面磨耗量由0.54 mm增加到1.5 mm过程过为磨耗稳定期;可以根据磨耗Ⅰ型面对车轮型面进行优化,从而延长动车车轮的稳定磨耗阶段.  相似文献   

10.
高速动车组晃车机理试验研究   总被引:1,自引:0,他引:1  
对运营中的高速动车组进行振动在线测试,分析高速动车组车内振动的时频特性,同时对车轮踏面形状进行同步测试,研究车轮等效锥度特征,分析比较晃车车轮和正常车轮等效锥度的差异以及对晃车现象的影响.测试结果表明,车体出现晃动时平稳性指标明显大于2.5,晃动主频为1.5 Hz左右,主要表现为车体侧滚和摇头的耦合振型;轮轨匹配等效锥度偏小以及抗侧滚扭杆、抗蛇行减振器性能衰减是造成车体晃动的主要原因,因此控制轮轨匹配的等效锥度和保证转向架悬挂系统正常对车辆运营具有重要意义.  相似文献   

11.
为分析高速动车组在不同运行速度下的转向架蛇行运动频谱,推导了自由轮对蛇行运动模型,建立了与纵向、横向速度和摇头角速度相关的3个一阶微分方程;建立了柔性转向架蛇行运动模型,给出了与轮对和构架的横移和摇头自由度相关的9自由度蛇行运动方程;结合车辆悬挂和实测轮轨接触关系等参数,联立自由轮对蛇行运动方程,求解不同轮对初始横移下...  相似文献   

12.
驱动工况单轮对横向稳定性   总被引:1,自引:1,他引:0  
为了解驱动工况下轮对横向稳定性,建立了考虑驱动力矩的简化单轮对动力学模型,针对不同轮轨的黏着特性,研究了弹性定位单轮的横向蛇行稳定性.结果表明:驱动工况下,轮对横向稳定性优于惰行工况,对于弹性定位动力单轮对,当平均蠕滑率为0.8%时,横向非线性临界速度为惰行时的1.1倍;驱动时,轮轨黏着饱和导致轮对摇头力矩减小,有利于横向稳定性,但纵向切向力增加使得横向切向力减小,对轮对横向稳定性不利.  相似文献   

13.
基于车辆系统动力学理论建立包括柔性齿轮箱体与柔性轮对在内的刚柔耦合动力学模型,应用直接转矩控制理论建立了牵引电机控制模型,利用Simpack与Simulink联合仿真平台建立了机电耦合模型;考虑轮轨激励、车辆结构振动与谐波转矩等因素耦合作用,通过机电联合仿真对牵引传动部件振动特性进行了频谱分析,对牵引电机悬挂节点径向刚度、轴向刚度及阻尼在不同量级区间内的取值进行了研究。分析结果表明:在牵引电机谐波转矩和车轮多边形作用下,高速列车牵引传动部件出现较为明显的高频振动,牵引电机悬挂节点径向刚度为20~30 MN·m-1时,牵引电机垂向振动达到极小值,齿轮箱体与牵引电机在6倍基波频率及车轮转频处振动加速度较小,且径向刚度较小时车辆安全性指标较优;牵引电机悬挂节点轴向刚度为4~6 MN·m-1时,齿轮箱体与牵引电机受电机谐波转矩及车轮多边形高频激励的影响较小;牵引电机悬挂节点阻尼为0.1~40.0 kN·s·m-1时,转向架部件振动有效值较小,阻尼的变化对车辆动力学指标的影响甚微,且车辆安全性及平稳性指标较优。  相似文献   

14.
为更深入全面了解高速列车系统动力学研究现状,综述了高速列车动力学性能对车辆运行稳定性、安全性和平稳性的影响,总结了列车安全评价方法和动力学试验方法在车辆动力学中的应用,基于轮轨间作用力,分析了轮轨磨耗对列车动力学性能的影响,概括了车-桥耦合模型、弓网系统以及列车空气动力模型在车辆系统动力学中的研究内容.分析结果表明:车...  相似文献   

15.
非赫兹接触轮轨蠕滑力数表TPLR的研究   总被引:5,自引:1,他引:4  
本文介绍了直线轨道上单轮对运动状态蠕滑率和蠕滑力关系律数表的编制方法。数表中轮轨蠕滑率/力计算模型是非赫兹型的。  相似文献   

16.
本文深入探讨了迫导向转向架所具有的低锥度失稳问题。以三轴、二轴迫导向转向架为对象建立数学模型,分析运动学失稳和动力学失稳两种模式。得到不同导向刚度下产生失稳的临界踏面锥度和不同锥度下的临界速度值。研究发现,通过参数的合理匹配,可使临界锥度降至常见最小锥度以下,从而可以避免低锥度失稳,为迫导向转向架的参数设计提出了一个新的准则。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号