共查询到20条相似文献,搜索用时 109 毫秒
1.
减振型板式轨道合理刚度动力分析 总被引:1,自引:3,他引:1
为了探明减振型板式轨道结构的合理刚度及其匹配关系,应用有限元分析软件建立了梁-实体动力学模型,并结合工程实际确定了轨下刚度和轨道板下刚度取值方案.在模拟落轴试验冲击荷载作用下,分析了减振型板式轨道结构的动力响应.结果表明,减振型板式轨道的扣件合理静刚度为30~50kN/mm,轨道板下板端胶垫刚度为0.07~0.18 N/mm3、板中胶垫刚度为0.06~0.15 N/mm3,此时可使各项动力学指标均处于比较合理的水平,有效降低轮轨动力冲击作用,起到较好的降噪减振效果. 相似文献
2.
双块式无砟轨道合理刚度取值研究 总被引:1,自引:0,他引:1
为确定双块式无砟轨道的合理刚度,提出将准静态与动力响应分析手段相结合,根据应力、变形及振动水平控制指标,综合比选合理范围内的多种轨道刚度方案来确定双块式无砟轨道合理刚度的方法.分别运用有限单元法和车辆-轨道耦合动力理论建立双块式无砟轨道准静态计算模型进行应力与变形分析,开展无砟轨道扣件刚度对轮轨系统动力响应的影响分析.结果表明:对于250 km/h和350 km/h客运专线双块式无砟轨道,扣件刚度宜分别在35~45 kN/mm和20~25 kN/mm范围内取值. 相似文献
3.
4.
轨道过渡段刚度突变对轨道振动的影响 总被引:8,自引:0,他引:8
建立轨道过渡段基础刚度突变的轨道振动微分方程,推导单轮作用下轨道变形的解析表达式。利用该解析解和叠加原理,研究轨道刚度突变对轨道振动的影响,分析单轮对和TGV高速列车在3种轨道刚度比时的轨道动力响应。结果表明,轨道刚度突变对轨道振动影响较大,轨道动力响应随着刚度比和列车速度的增加而增加。在理论分析基础上,提出轨道过渡段整治原则:过渡段宜采用分层(3~4层)强化基础刚度的措施;列车在过渡段运行时应满足所引起的动力系数小于或等于1.2及过渡段各层之间的刚度比在0.5~1之间;过渡段每层平缓距离,当列车速度小于或等于160 km.h-1时,取5 m,当列车速度大于160 km.h-1时,取10 m。 相似文献
5.
以CRTSⅠ型、CRTSⅡ型、CRTSⅢ型板式无砟轨道和双块式无砟轨道为研究对象,建立有限元模型,研究列车荷载和典型病害对无砟轨道整体刚度的影响.结果表明:无砟轨道整体刚度随列车荷载的增大而增大,列车荷载的增大对路基区段无砟轨道整体刚度的影响明显大于桥隧区段;无砟轨道整体刚度随轨道板、底座板/支承层脱空长度的增大而减小... 相似文献
6.
时速350km客运专线无砟道岔的合理轨道刚度研究 总被引:4,自引:3,他引:1
分析高速无砟道岔轨道刚度的组成特点,从舒适性、应力、变形、振动和部件刚度匹配5个方面提出了高速道岔刚度合理取值的评判,运用车辆-道岔空间耦合动力学理论建立了高速道岔轨道合理取值的确定方法。运用该方法分析了时速350 km客运专线无砟道岔轨道刚度的合理取值,结果表明:22.5~27.5 kN/mm的扣件系统刚度,270~330 kN/mm的轨下胶垫刚度,24~30 kN/mm的板下胶垫刚度最为合理。 相似文献
7.
结合国内外轨道刚度评价方法和加载车检测数据的统计分析结果,提出利用轨道刚度幅值和标准差来评价轨道刚度,其中轨道刚度的合理幅值根据部件刚度计算得到,轨道刚度标准差合理值通过统计分析得到.据此得出武汉—广州高速铁路轨道整体刚度合理值为60~140 kN/mm,轨道刚度标准差合理值不大于10 kN/mm.利用加载车双弦弦测法... 相似文献
8.
《西铁科技》2007,(4)
随着时间的推移,桥梁两端外的轨道(桥头引线)常常发生下陷(如图1所示)。桥梁两端外轨道下陷,亦称冲击,是经常造成列车走行不平稳的地方,与其他位置的轨道相比,更需要经常进行轨道找平作业。人们普遍认为,轨道下陷是由于车轮通过桥梁上轨道与桥梁两端外轨道之间刚度急剧变化处所产生的动态车轮作用力所致。图2显示的是铺碴桥面桥梁上的轨道与该桥梁两端外轨道间轨道刚度(或称轨道模量)差。通过减少轨道刚度差,或使刚度过渡更为渐进,以此来消除桥头引线轨道下陷,为此虽然经过了多次尝试,但都收效甚微。由此引发了对轨道刚度差理论的研究,以期发现以往努力未成功的原因。为评估轨道刚度差造成桥头引线下沉,及其影响列车走行质量的程度,采用五种了不同的方法。其中包括技术上最复杂的方法和最基本的方法。五种方法的结果得到的结论相同:桥梁端头轨道刚度的变化对桥梁引线处的轨道下沉或列车走行质量未造成实质上的影响。 相似文献
9.
从轮轨相互作用的观点,用模型讨论了轨道刚度与轮轨相互作用的关系,认为提高运行速度的主要问题是轨道刚度太大,为使混凝土轨枕的有碴轨道保持与木枕有碴轨道同等的刚度,采用适当弹性的胶垫是轨道适当当前提速要求的有效对策。 相似文献
10.
以轨道车辆为背景,依据转轴公式和平行移轴公式得到车体截面内任意倾角部件的惯性矩,进而获得截面的刚度及其灵敏度。在已知车体刚度分布的前提下,依据车体刚度及其灵敏度,通过调整刚度薄弱位置相关部件的截面尺寸,可达到提高车体刚度的目的。 相似文献
11.
轨道结构刚度的理论计算 总被引:2,自引:0,他引:2
介绍轨道总刚度的计算,轨下垫层刚度和扣件刚度之间的关系,轨下垫层、扣件和道床刚度的理论计算方法等。在对道床刚度计算时,采用道床分层计算法,根据不同深度道床应力的梯形分布求出最大道床应力和道床弹性模量计算道床刚度,由于最大道床应力的范围小于平均道床应力的范围,所以用此法计算的道床刚度接近实测值。进一步指出虽然理论计算的轨道部件刚度值是线性的,但实际轨道部件刚度是非线性的,在具体应用时应根据荷载范围选用轨道结构刚度值。 相似文献
12.
轨道动刚度是不同激振频率的荷载作用下,轨道抵抗变形的能力,由于有砟轨道与无砟轨道两种轨道的组成差异造成两者间存在较大动刚度差异。随着行车速度的提高、中高频段激振荷载的增加,有砟轨道与无砟轨道间的动刚度差异逐渐增大,这对于行车平顺性与结构耐久性会造成较大影响,但目前缺乏轨道动刚度的相关研究。为研究有砟轨道与无砟轨道间的动刚度差异,根据两种轨道的结构特点,建立相应的ANSYS有限元模型,通过对比分析,得出两种轨道的轨道动刚度在中低频段存在较大差异,轨下动刚度在全频段存在较大差异。为保证有砟-无砟轨道过渡段的行车平稳性与结构耐久性,需要考虑两种轨道间的动刚度过渡设计。此外,轨道动刚度特性分析可以指导高速铁路高低不平顺控制,从而保证行车平顺性。 相似文献
13.
《铁道标准设计通讯》2016,(9):32-36
为充分了解轨道动力特性,对有砟轨道动刚度展开研究。通过建立有砟轨道力学模型,分析0~2 000 Hz范围内轨道动刚度的振动特性,得出:轨道动刚度相对于轨道静刚度是随激振频率变化的,轨道动刚度在低频段受激振频率变化影响较小,在中、高频段内轨道动刚度振动幅值随激振频率变化而变化,是系统的固有特性,需通过对构件刚度、阻尼等参数调节。阻尼系数对轨道动刚度的幅值有影响,但不改变轨道的共振频率。质量阻尼系数对轨道动刚度波动范围及幅值的影响小于刚度阻尼系数的影响。阻尼系数增大,轨道动刚度波动幅值增大。 相似文献
14.
高速铁路无砟轨道路基面支承刚度研究 总被引:1,自引:0,他引:1
研究目的:为描述高速铁路结构设计中路基和地基的整体结构性能,提出并解释了路基面支承刚度概念,并对其工程意义及设计检测方法进行探讨.研究结论:路基面支承刚度是无砟轨道结构分析的重要参数,也是实现无砟轨道线下基础纵向刚度匹配的关键指标,可用于描述基床表层顶面对轨道结构地面的结构支承性能,同时也可作为轨道结构对路基结构性能的要求.通过对路基层状体系竖向刚度组合优化设计,可以实现路基面支承刚度的控制;通过不同断面的路基竖向刚度组合设计,可以实现线路纵向刚度调整,实现路基与其它构筑物刚度匹配.路基面支承刚度可通过承载板试验进行测试,承载板面积宜为1.0×1.0 m2~1.5×1.5 m2. 相似文献
15.
轨道结构安全服役的关键理论研究是确保我国大规模高速铁路路网高效运营的重大基础性工作,本文针对我国高速铁路轨道结构安全服役问题进行了综合论述,提出以高速道岔、无砟轨道、无缝线路三大关键轨道结构为研究对象,围绕环境因素与列车动荷载耦合、重复作用下工程结构与材料动态性能演化、高速铁路轨道结构损伤及累积变形、高速车辆系统与固定轨道结构的动态相互作用演变机制等关键问题,开展其动态性能演变及服役安全理论和工程技术方面的研究,以期为我国高速铁路轨道结构服役安全与高效维护提供基础理论和关键技术支撑。 相似文献
16.
17.
温度对板式无砟轨道结构的影响研究 总被引:5,自引:0,他引:5
研究目的:基于传热学的基本理论,采用有限元分析法,利用大型商业软件ABAQUS对板式无砟轨道结构在温度作用下的影响进行仿真计算,分析不同基础支撑形式及不同轨道板宽度和厚度对无砟轨道结构温度效应的影响,探讨温度变化对板式无砟轨道结构的影响规律,为无砟轨道的结构设计提供依据. 研究结论:(1) 温差变化和结构变形并非呈现简单的线性关系,而是温度越高,变形的变化幅度越大.(2) 刚性基础支撑下由于温差而引起的轨道板的温度应力远大于弹性支撑下轨道板的温度应力,但是刚性基础支撑下由于温差而引起的轨道板的最大竖向位移差则小于弹性支撑下轨道板中的情况.(3) 在相同的板厚温度梯度条件下,轨道板的变形量随板厚的增加而增大,随板宽的增大而增大. 相似文献
18.
高速铁路无碴轨道结构的试验研究 总被引:4,自引:0,他引:4
结合国外高速铁路无碴轨道的发展与应用情况,提出并设计了3种结构型式无碴轨道:长枕埋入式、弹性支承块式与板式轨道,并对室内铺设的实尺模型进行静载、疲劳及落轴试验,综合评估其整体性能,为今后高速铁路无碴轨道的选用提供技术依据。 相似文献
19.
研究目的:铁路道岔侧股轨距是小号码道岔平面线型设计的关键,构造加宽引起的曲股最大轨距是其中的重要项点.铁路工务部门需要构造加宽作为道岔铺设、维护等工作的理论依据.本文提出的构造加宽计算方法可供道岔设计及施工人员借鉴.研究结论:通过对小号码道岔轨距加宽规律的研究,综合考虑曲线线型、尖轨类型、道岔始端轨距、尖轨尖端轨距、侧线轨距等因素,分析了道岔转辙器部分构造加宽的成因并提出了各种情况下的构造加宽计算方法,进一步完善了构造加宽的定义,开发了道岔构造加宽的通用计算程序. 相似文献
20.
研究目的:目前,轨道刚度变化对车辆-轨道耦合系统频率响应的影响规律尚不明确,本文基于车辆-轨道耦合动力学理论,以既有提速线路为例,从频率角度,研究轨道刚度变化对车辆-轨道耦合系统振动响应的影响。研究结论:(1)轨道刚度的变化,对车体、转向架的振动影响较小,对轮对及轨道结构的振动影响较大;轨道刚度的增大,对27 Hz以下的低频振动基本无影响,27~70 Hz之间的中低频振动略有降低,100 Hz以上的中高频振动显著增大;(2)随扣件刚度的增大,轮轨力谱以及轮对、钢轨振动加速度谱的最大值均显著增大,且振动频率有向高频发展的趋势;(3)随道床刚度的增大,频率响应谱的最大值变化相对较小,轮轨力、轮对、钢轨和轨枕的振动频率向高频移动;(4)总体上看,扣件刚度对耦合系统振动响应的影响较大,在线路维修时应及时更换恶化的扣件系统,道床刚度变化的影响相对较小,其维修周期可适当延长;(5)该研究可指导轨道结构的优化设计以及轨道的养护维修。 相似文献