首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
长寿柔性路面设计通常采用沥青层底极限拉应变和土基顶部极限压应变作为控制指标。现阶段极限应变指标参照室内试验结果确定,且数值相对固定。而现场路面结构层应变响应值受结构厚度、荷载、环境作用(温度及老化)等因素的影响,在服役过程中不断演化。以2条服役超过35年的柔性路面结构(屯门公路与吐露港公路)为基础,分析了不同服役阶段路面结构层在不同荷载、环境作用下的极限应变响应,探讨了柔性路面极限应变的大概范围。研究结果表明:在初始服役状态下,屯门公路高温状态下沥青层底的极限拉应变为376×10-6,土基顶部极限压应变为562×10-6;低温状态下上述极限应变分别降为87×10-6,249×10-6;吐露港公路高温状态下沥青层底、土基顶部极限应变分别为149×10-6,324×10-6,低温状态下上述应变分别降为50×10-6,156×10-6。在经过长期服役后,老化状态下2类路面沥青层底拉应变及土基顶部压应变均大幅降低。屯门公路在使用36年后,某些路段出现零星的疲劳破坏,而吐露港公路则没有发现疲劳破坏。极限应变计算结果表明,路面关键位置的应变受荷载、沥青层厚度、温度和沥青层老化状态等多因素的影响。因此,在进行长寿柔性基层路面设计中,荷载、沥青层厚度、温度及沥青层老化状态等因素都应该考虑在内。  相似文献   

2.
为保证广州明珠湾大桥主桥疲劳性能及寿命满足要求,根据该桥正交异性钢桥面板设计尺寸和构造,采用与施工现场相同焊接条件,制作8个足尺单U肋模型并进行疲劳试验,确定桥面板的疲劳破坏关注点及其疲劳寿命曲线;建立桥面板有限元模型,分析实际车辆荷载作用下桥面板的疲劳力学性能,并根据名义应力法确定该桥钢桥面板的疲劳寿命。结果表明:桥面板U肋与顶板焊接位置、U肋与横隔板围焊位置为疲劳易损部位,循环次数为5×106次时,两处常幅疲劳极限分别为42.04 MPa和60.30 MPa;桥面板U肋与顶板焊接位置最大应力幅为14.02 MPa,小于常幅疲劳极限,可不考虑疲劳寿命;U肋与横隔板围焊位置最大应力幅为64.73 MPa,大于常幅疲劳极限,桥面板疲劳寿命为158年,满足大桥设计基准期100年的要求。  相似文献   

3.
针对钢-UHPC组合桥面板中UHPC的收缩效应,进行了3个不同钢-UHPC面积比的组合桥面板节段足尺试件和UHPC自由收缩试件的养护全过程应变及温度测试,分析了收缩应变发展规律及蒸养温度的影响。基于所得UHPC自由应变、组合桥面板UHPC约束应变和时变止效应方法,求解了养护过程的UHPC弹性模量和组合桥面板收缩应力。结果表明:(1)UHPC总自由收缩约为756×10-6,蒸养的UHPC内部温度愈高,收缩完成愈快;以自收缩时间零点算起,-1 h开启蒸养,龄期5 h的UHPC内部温度达90℃以上,持续蒸养48 h,则龄期5、25、35 h时分别完成总收缩的52%、82%、91%以上,龄期12 d时收缩全部完成;(2)UHPC弹性模量、组合桥面板收缩应力与收缩应变的发展规律基本一致;(3)整个养护过程,钢-UHPC组合桥面板的UHPC收缩应力远小于其当时的轴心抗拉强度,不会产生收缩裂缝,与观测现象相一致;(4)钢-UHPC组合桥面板的UHPC上缘约束收缩拉应力值为2 MPa左右,与静载试验所得钢-UHPC组合桥面板负弯矩的开裂应力较轴心抗拉强度减少值基本一致;(5)基于...  相似文献   

4.
为解决大跨径钢桥面疲劳开裂和铺装层早期损坏这两大难题,提出薄层聚合物混凝土(TPO)铺筑于超高韧性混凝土(STC)-钢桥面板的超高性能轻型组合桥面铺装体系。基于马房大桥的有限元模型,分析STC+TPO铺装体系的受力和变形特点。计算结果表明:采用STC+TPO铺装体系,钢桥面板中的拉应变平均降幅达76.4%,铺装层中的拉应变峰值和竖向位移峰值降幅均大于49.0%;此外,车辆荷载、环境温度和铺装层厚度等对STC+TPO铺装体系的受力状况有较大影响,60℃时STC-TPO界面抗剪强度可达2.56 MPa;STC+TPO铺装体系能大幅提高桥面系刚度,降低铺装层和桥面板的应力应变幅值,从而减小桥面板和铺装层疲劳开裂的风险;同时,STC和TPO的抗拉强度及界面抗剪强度均满足重载和高温环境下的使用要求。  相似文献   

5.
开展路面长期性能观测对掌握沥青路面全寿命周期性能演变规律具有重要意义。文中以京沪高速为依托工程,制定应变计布设方案与监测方案开展路面应变响应信息监测,对监测数据进行分析。结果表明,车辆通过后,面层和上基层应变主要为压应变,其变化范围为0~25×10-6,下基层和底基层应变主要为拉应变,其变化范围为0~7×10-6;拉应变和压应变的交变点分布在上基层;路面结构内部应变随车辆荷载的增加而增加,但应变随荷载变化呈现非线性的变化趋势;实测结果和理论计算结果比较接近,均呈现出结构上部受压、下部受拉的变化特征,但在拉压应变交变点分布位置上实测结果和理论结果有所差异。  相似文献   

6.
开展2种不同轴拉性能(高应变强化型和应变软化型)的超高性能混凝土(UHPC)的圆环约束收缩性能研究。首先对高应变强化型UHPC及应变软化型UHPC进行单轴拉伸试验及声发射实时损伤定位试验,得到不同龄期时(2,7,28,80 d) UHPC的轴拉应力-应变曲线及其拉伸损伤演化机制。随后对2种UHPC进行圆环约束试验,得到UHPC内钢环的压缩应变-龄期曲线。最后基于高应变强化型UHPC及应变软化型UHPC的轴拉性能(应变强化与否)、抗拉强度发展规律及拉伸损伤演化机制,分析2种UHPC的圆环约束收缩机理。研究结果表明:高应变强化型UHPC的内钢环压缩应变-龄期曲线出现大量幅值小于10×10-6的锯齿形波动,对应产生的微裂纹宽度小于0.01 mm,与裂缝测宽仪(精度为0.01 mm)在UHPC圆环试件上始终未检测到微裂纹的结论相一致;应变软化型UHPC的内钢环压缩应变随着龄期出现了4次较明显的瞬时突变(28×10-6,53×10-6,41×10-6,18×10-6),且裂缝测宽仪在UHPC表面检测到了4条微裂缝(0.035,0.050,0.040,0.020 mm),由于拉伸软化特性,后续在其他荷载作用下会导致裂缝持续扩展;高应变强化型UHPC的应变强化特性使其在约束状态下产生的拉应力以多点分布微裂纹(宽度小于0.01 mm)的形式逐步小幅释放,应变软化型UHPC在约束作用下产生的拉应力通过多缝开裂(宽度小于0.05 mm)的方式瞬时部分释放。  相似文献   

7.
某桥为2×122.5m独塔斜拉桥,主梁为Π形截面预应力钢筋混凝土梁,该桥建成于20世纪90年代,经过多年运营,50号混凝土桥面板普遍出现纵向裂缝。为研究裂缝成因,采用有限元软件计算各种荷载作用下Π形梁桥面板的横向应力,通过荷载试验实测Π形梁桥面板的横向应力和纵向裂缝开展情况,并进行对比分析。结果表明:自重荷载不是桥面板产生纵向开裂的因素;汽车荷载对桥面板纵向开裂有一定的影响,但不是主要原因;按85规范温度梯度计算,桥面板底面未出现横向拉应力,按2015规范正温度梯度计算,桥面板底面拉应力达4.46 MPa,超过现行规范《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)中有关C50混凝土的抗拉强度设计值,85规范关于温度梯度荷载的规定偏不安全,是导致桥面板纵向开裂的主要原因;横隔梁预应力对桥面板纵向开裂的影响较小。  相似文献   

8.
畅卫杰  陈勇  吴向阳  应宇锋 《公路》2023,(9):237-242
钢箱梁是大跨径桥梁常用的结构形式,其桥面板一般采用正交异性钢桥面板,在大量交通荷载反复作用下,正交异性钢桥面板易出现疲劳病害。现依托西堠门大桥的状态评估项目,基于桥梁结构健康监测系统中的动态称重系统监测数据,对实际运营车辆荷载进行概率拟合,然后基于随机车辆荷载法对正交异性钢桥面板关键疲劳细节进行疲劳损伤计算,为钢箱梁的养护管理决策提供相应的理论依据。研究表明:西堠门大桥正交异性钢桥面板的疲劳损伤和裂纹处于可控范围内。基于随机车辆荷载模型的钢桥面板疲劳状态评估方法,为西堠门大桥的钢桥面板疲劳养护提供指导,并为境内同类正交异性钢桥面板桥梁的疲劳评估提供借鉴。  相似文献   

9.
基于能量桩的桥面工程主动式融雪除冰技术作为一种新型桥面融雪除冰技术,具有环保、节能等技术优势。依托江阴市征存路观风桥市政桥梁工程,开展能量桩供热桥面板的换热效率与热-力响应特性现场试验。在桩基础和桥面板中分别预埋聚乙烯管作为换热管,通过水泵驱动换热管中的流体循环,提取浅层地温能供热桥面板;沿桩身深度方向和在桥面板中布设了温度-应变传感器,用于监测试验过程中相应位置的温度和应变。试验分析冬季工况下,一根20 m的能量桩供热20 m2的桥面板时,流体、桥面板、桩的温度变化以及桥面板和能量桩的热致应力分布。研究结果表明:根据现场试验条件,环境温度为-4℃时,20 m能量桩供热20 m2桥面板可保证桥面板表面温度始终高于0℃,即平均每延米能量桩热泵系统可保障1 m2桥面板不冻结;温度的改变使得能量桩和桥面板中产生热致应力,桩身最大轴向热致应力出现在桩深10 m (50%桩长)处,约为-1.05 MPa,为混凝土抗拉强度(2.0 MPa)的52.2%,桩身最大轴向热致应力的温度响应约为0.205 MPa·℃-1;桥面板中最大热致应力为0.77 MPa,为混凝土抗压强度(26.8 MPa)的2.9%,热致应力的温度响应为0.086 MPa·℃-1;能量桩上部受到最大正摩阻力为21.1 kPa,下部受到最大负摩阻力为13.3 kPa;试验结束时桩顶热致位移为-0.239 mm,约0.03%桩径。  相似文献   

10.
正交异性钢桥面板的疲劳寿命评估   总被引:5,自引:0,他引:5  
钢桥疲劳是由于各种车辆轮载反复作用引起的累积损伤过程,很容易疲劳开裂,因此疲劳验算是钢桥面板设计中的一项重要任务。利用静力试验的应力结果,并结合ANSYS有限元数值计算,提出了闭口纵肋正交异性钢桥面板的疲劳验算方案,在理论上对钢桥面板进行了寿命的具体分析。  相似文献   

11.
《公路》2015,(7)
在车辆荷载作用下,正交异性钢桥面板的疲劳开裂对结构的疲劳性能以及使用安全性能具有较大的影响,钢桥面板中复杂的焊接连接细节成为裂纹出现的集中区域。依据在正交异性钢桥面板方面研究相对成熟的AASHTO、Eurocode和日本规范,结合我国公路钢结构桥梁设计规范(送审稿);通过数值分析得到疲劳敏感细节在各国标准疲劳车辆荷载下的应力响应,并按照规范对细节的疲劳强度进行验算。验算结果表明,疲劳细节的应力幅对轴重比较敏感;顶板与U肋细节的纵向影响线比横隔板与U肋焊接处的影响线短;顶板与U肋处细节和横隔板挖孔处细节更容易发生疲劳裂纹。  相似文献   

12.
从刘家峡大桥桥面较窄、主梁重力刚度较低、活载比例高等结构和力学特性出发,深入细致地分析了该桥易疲劳破坏的典型细节和破坏特点。结合交通量调查结果和国内外相关设计规范,制定了适用于刘家峡大桥疲劳设计的车辆荷载模型及其荷载谱,并通过有限元模拟计算的分析方法,对刘家峡大桥桁式加劲梁、正交异性钢桥面板等关键结构细节的疲劳强度进行了检算。结果表明,该桥疲劳安全性满足设计要求并具有一定储备。  相似文献   

13.
为研究UHPC梁的斜截面抗裂性能并提出合理的评价指标和设计建议,以期能充分利用UHPC超高的抗拉性能及优秀的裂缝控制能力,设计了5片预应力UHPC-T形梁,并完成其静力加载模型试验,试验参数为剪跨比、箍筋和钢纤维含量,获得了开裂荷载、裂缝分布和应变等关键试验结果。试验结果表明:当剪跨比增加时,开裂荷载会减小,斜裂缝宽度的发展速度却加快;箍筋对开裂荷载影响较小,但能抑制斜裂缝的发展;钢纤维含量的增加会提高开裂荷载和减缓斜裂缝的发展速度。根据材料力学公式推导出斜截面开裂剪力计算公式,进一步采用极限平衡法建立正常使用阶段斜裂缝宽度的计算方法,计算值与试验值吻合良好且偏于安全。通过计算实测开裂剪力作用下斜截面的主拉应力可知:开裂时斜截面的主拉应力会超过UHPC的抗拉强度,不仅体现了UHPC的应变硬化特性,还反映了UHPC梁良好的斜截面抗裂性能。对比各国规范的斜截面抗裂设计规定,中国规范建议稿的容许应力值较为保守。基于开裂时的主拉应力水平和各国规范规定,建议放宽整体预应力UHPC梁的主拉应力限值,取为60%的弹性极限抗拉强度并考虑纤维分布的不均匀性。对于允许开裂的UHPC梁,应验算正常使用阶段的...  相似文献   

14.
为研究独塔弯曲斜拉桥钢箱梁在4线铁路重载下的疲劳特性,以主跨2×175m,平曲线半径为1 147.8m的贵广铁路东平水道桥为背景,对主跨正交异性桥面板钢箱主梁在轴力、竖向弯矩、横向弯矩和扭矩耦合作用及剪力滞效应下的受力性能及抗疲劳性能进行分析。分析结果表明:在多线铁路活载和附加力等最不利荷载组合下,钢箱梁结构总体受力良好;钢箱梁在1.6线的ZK荷载作用下,叠加应力能满足规范中的疲劳强度要求;扁平钢箱梁截面在多线铁路弯斜拉桥设计中具有较好的适用性。  相似文献   

15.
杜斌  于可 《公路工程》2008,33(1):110-113
桥梁结构自重较大,一般均采用带载加固。当在梁的受拉区直接粘贴钢板或粘贴其他纤维复合材料对桥梁进行加固时,一期恒载(构件自重与恒载)由原梁承担,二期荷载(活载)由加固后的组合截面承担,后加补强材料的强度发挥程度受原梁变形的限制,应考虑分阶段受力特点。通过理论分析,分别考虑以原梁混凝土极限压应变和原梁受拉钢筋极限拉应变控制的加固设计方法,得出了直接粘贴钢板或粘贴其他高强纤维复合材料加固桥梁的正截面抗弯承载力的计算公式。  相似文献   

16.
杜斌  于可 《中南公路工程》2008,33(1):110-113
桥梁结构自重较大,一般均采用带载加固.当在梁的受拉区直接粘贴钢板或粘贴其他纤维复合材料对桥梁进行加固时,一期恒载(构件自重与恒载)由原梁承担,二期荷载(活载)由加固后的组合截面承担,后加补强材料的强度发挥程度受原梁变形的限制,应考虑分阶段受力特点.通过理论分析,分别考虑以原梁混凝土极限压应变和原梁受拉钢筋极限拉应变控制的加固设计方法,得出了直接粘贴钢板或粘贴其他高强纤维复合材料加固桥梁的正截面抗弯承载力的计算公式.  相似文献   

17.
预应力混凝土槽形梁桥的主梁连接板在运营过程中易产生开裂病害,为修复桥面板的裂缝,改善桥梁受力,提出超高性能混凝土(UHPC)薄层加固法(在桥面板底部浇筑1层UHPC,与原结构整体受力),以沪嘉高速公路蕰藻浜大桥加固项目为背景,论述该方法在该桥加固中的应用。为检验加固效果,采用ANSYS建立甲式桥面板(槽形主梁连接板)的局部有限元模型进行应力分析,并通过荷载试验分析甲式桥面板加固前、后的受力及变形。通过理论和试验分析可知:加固后,在车辆荷载作用下,甲式桥面板的横向应力降至0.5 MPa以下,UHPC层拉应力为2.5MPa;甲式桥面板的横向应变降低了约65%,竖向挠度降低了约60%;UHPC层的应力实测值与有限元理论值基本一致。说明UHPC薄层加固法可有效改善桥面板受力,提高桥面板的刚度,减小桥面板的挠度。  相似文献   

18.
周立兵  张刚  王敏 《桥梁建设》2020,50(2):50-55
武汉军山长江大桥原桥面铺装为双层SMA,随着车流量的增加和超重车辆的影响,运营多年后该桥正交异性钢桥面板出现疲劳裂缝。为处治桥面板隐性裂缝,分别对上游侧进行了钢桥面冷拌环氧树脂桥面铺装及桥面板焊接施工,对下游侧进行钢-UHPC组合桥面铺装改造。为评估钢-UHPC组合桥面的改造效果,基于已建立的运营期安全监测系统及有针对性的增布动应变测点,对随机荷载作用下桥梁上、下游侧桥面板的局部应力进行测试。结果表明:在下游侧的车辆数量和轴重均高于上游侧的情况下,下游侧测点的等效应力幅大多小于对应的上游侧,表明钢-UHPC组合桥面铺装明显改善了该桥正交异性钢桥面板的疲劳应力。  相似文献   

19.
为了研究开口加劲肋正交异性钢桥面铺装的力学行为特性,通过建立钢箱梁和铺装整体三维有限元模型,分析了荷载作用下铺装层最大拉应力、铺装与钢板层间最大剪应力等技术指标的变化及分布规律。得到如下结论:拉应力是导致铺装出现开裂破坏的主要原因,疲劳裂缝应沿桥梁的纵向;当以拉应力作为控制指标时,钢桥面铺装在距离横隔板0.4 m范围内受力最为不利;开口加劲肋正交异性钢桥面铺装应变水平远大于一般沥青路面;铺装对车辆荷载的应力应变响应具有很强的局部效应;铺装与钢板层间剪应力较大,在铺装结构设计时应注意选择具有较强抗剪强度的粘结材料。  相似文献   

20.
为探究装配式轻型组合梁结构中纵向接缝合理形式,以广东麻埔停车区跨线桥为工程背景,提出了一种局部加高的新型构造形式,并与传统平口接缝构造进行了对比分析。通过有限元建模分析表明:局部加高接缝桥面板静力工况和疲劳工况的主拉应力均小于平口接缝桥面板的主拉应力。开展带接缝桥面板足尺模型抗弯试验,局部加高接缝试验试件开裂荷载为67.07 kN,比平口接缝试验试件开裂荷载高约92.4%,满足设计要求,且将接缝局部加高,可以提高安全系数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号