共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
为研究波浪对跨海桥梁风车-桥耦合振动系统的影响,针对跨海桥梁所处风大、浪高的极端环境,建立了波浪-风-列车-桥梁动力模型,将风场视为空间相关的平稳高斯过程,高速列车采用质点-弹簧-阻尼器模型模拟,精细化全桥模型通过有限元方法建立,考虑风-列车-桥梁之间的耦合作用,波浪作为外部荷载施加到该耦合体系中。以主跨532 m某海洋桥梁为例,通过自主研发的桥梁科研软件BANSYS (Bridge Analysis System),分析了波高、风速、车速对耦合模型车辆和桥梁响应的影响。结果表明:风车-桥耦合振动体系的车辆和桥梁响应受波浪影响显著,车辆和桥梁响应在与波浪荷载一致的方向增加显著,15 m·s-1风速下,考虑波浪影响的车辆横向加速度最大值约是不考虑波浪时的1.3倍,考虑波浪影响的跨中横向位移最大值约是不考虑波浪时的22倍,而在非一致方向波浪对车-桥响应的影响较小;不同风速下,波浪对车辆横向加速度影响显著,考虑波浪影响的车辆横向加速度约是不考虑波浪时的1.2倍,而车辆竖向加速度、轮重加载率、倾覆系数等指标主要受风速的影响;波浪基频与桥梁横向位移响应谱主峰频率一致,波浪已成为影响桥梁横向位移响应的控制因素;波浪减弱了车速对车-桥响应的影响,随着波高的增加,车辆和桥梁响应对车速的变化更不敏感。 相似文献
4.
提出一种新的直接求解车-桥系统振动响应的方法,即把车-桥系统作为一个整体来考虑,通过变换车轮与桥面对应点间的耦合关系来实现车辆移动,从而使车-桥系统振动响应的求解更加简便和实用化;将该程序计算结果与理论分析结果、ADAMS软件计算结果及模型试验结果进行对比;应用该车-桥相互作用分析程序研究了在2种路面粗糙度条件下的车-桥系统竖向响应,并进行了对比分析.结果表明:提出的程序计算结果正确、可靠;车-桥系统的竖向加速度及车轮与桥面之间的相互作用力受路面粗糙度影响较大. 相似文献
5.
6.
7.
为研究车辆变速行驶状态下的车-桥耦合振动,建立考虑纵向刹车或加速影响的有限元模型.模型中假设当前时间步车辆的平均加速度可由求解初值求得,则计算中可用车辆的相对位移代替其绝对位移,因此车辆中各集中质量处的惯性力均可求得;通过与二轴车辆过桥模型半解析解对比,验证了该有限元模型的正确性. 相似文献
8.
采用谐波合成法和桥面粗糙度理论分析风-车-桥系统的随机性,分析侧向风对桥面振动的影响机理,提出考虑风速风向联合分布影响,并基于动力可靠度理论对风-车-桥系统进行行车安全可靠度分析。通过工程实例计算表明,在不同风向分布中考虑联合分布的动力可靠度值更可靠,在进行安全分析评价的时候更安全,是最符合实际情况的评价指标。 相似文献
9.
为研究简支钢板组合梁桥动力冲击系数,根据我国钢板组合梁桥实际应用情况,设计了150座不同参数组合的简支钢板组合梁桥,结合中国规范五轴车辆模型,建立车辆—桥梁耦合动力分析系统,通过数值模拟对冲击系数进行求解,分析不同参数对冲击系数的影响规律,最后提出基于跨径的冲击系数计算表达式,并与境内外规范进行对比分析。结果表明:简支钢板组合梁桥跨径、主梁数量、斜交角、车道数量、车辆车速均对冲击系数具有显著的影响,在60 m以下范围内冲击系数随跨径增大逐渐增大,超过60 m时,随跨径增大,冲击系数逐渐减小;主梁数量越多,冲击系数越小;斜交角超过45°时,应关注扭转导致的冲击系数放大作用;车道数量对冲击系数影响较小,冲击系数随车速的增加线性增长。可见,本研究计算的钢板组合梁桥冲击系数取值及其随跨径的变化规律与境内外规范相比存在明显差异,我国规范规定的冲击系数取值在40 m以下跨径中偏保守,当跨径超过40 m时,取值偏不利。研究结果可为简支钢板组合梁桥冲击系数取值提供参考。 相似文献
10.
为实现刹车时桥上多状态车流并行动态演化的高真实度模拟和时变汽车荷载与桥梁运动状态的时时耦合,首先从宏观和微观上丰富随机车流模拟方法,宏观上沿用交通荷载调查数据中的车辆顺序、车辆基本特性等不变量,以车辆间距为服从正态分布的限幅随机变量,形成深度融合交通荷载调查数据和交通流理论的随机车流高真实度仿真方法;微观上对车辆间距随机变量确定的关键状态-阻塞状态,引入加权速度,实现阻塞密度时车流的走走停停动态描述,采用考虑驾驶人状态的概率分布方法确定车辆时距;实现多密度随机车流的高真实度仿真。其次细化刹车过程模拟,建立车流差异化刹车模型:采用顺次对比方法,筛选桥长范围最不利刹车车流;引入停车视距,考虑驾驶人反应,区分头车和跟驰车辆,精细模拟车辆刹车动态过程和刹车车流演化过程,差异化确定各车辆刹车参数;实现桥上多状态车流并行动态演化模拟。第三建立刹车力学模型,并融入至已有正常车流的车-桥耦合系统,构建可考虑刹车状态的分析系统。最后确定桥梁典型响应和分析指标,以一座大跨斜拉桥为例,对多刹车工况下的桥梁响应进行分析。结果表明:桥上刹车状况一般会产生超过正常行驶状况下的桥梁响应,最不利单车道刹车状况下的塔根弯矩甚至达到跑车工况的2.7倍,简单采用规范冲击系数方法很难实现刹车响应的包络;刹车过程中的桥梁响应最值不仅与采取刹车的车辆数目和桥上车辆保有量有关,还受刹车作用与桥梁原响应趋势的顺逆程度控制;桥梁及桥上刹停车辆的总质量和桥上正常行驶的车辆决定桥梁响应时程曲线趋势振幅;典型桥梁响应的总体趋势,与车流密度和刹车车道数相关性较小,不同时段车流会对梁端顺桥向位移和塔根弯矩产生影响。 相似文献
11.
12.
风-列车-桥(简称风-车-桥)系统耦合振动涉及多学科交叉,是双重随机激励作用下的时变耦合系统,是研究列车抗风安全性的主要方法之一。从提出风-车-桥的概念以来,国内外学者对此进行了大量的研究,取得了积极的进展,为进一步促进风-车-桥系统耦合振动的研究,从车-桥系统风荷载、车-桥耦合模型、风-车-桥耦合模型三部分出发,对风-车-桥系统研究的一些重要成果进行回顾和介绍。其中,车-桥系统风荷载部分包含静风力、抖振力(脉动风模拟和气动导纳)、风载突变效应3个方面;静风力方面,回顾车-桥静动态系统气动特性的风洞试验方法及数值模拟方法,讨论不同试验和分析方法的优缺点及其适用的情况;抖振力方面,介绍脉动风模拟方法以及气动导纳的计算方法;风载突变方面,介绍横风作用下列车过桥塔及双车交会时风洞试验和数值模拟方法。车-桥耦合振动模型部分,回顾车辆分析模型和车-桥系统的求解方法。风-车-桥耦合模型部分包含分析模型、耦合机理和实际应用3个方面,回顾风-车-桥系统的耦合机理,结合实例介绍风-车-桥系统耦合振动方法的实际应用。最后,结合当前风-车-桥系统研究的不足之处,提出车-桥动态系统气动特性的风洞试验技术、风-车-桥系统的精细化分析模型、现场实测、可靠度及其评价准则是其今后的主要研究方向。 相似文献
13.
14.
利用有限元分析软件建立三轴重载货车精细化模型,以实际桥梁为研究背景,通过显示求解程序LS-DYNA内置的接触算法对重车作用下大跨度连续刚构桥的动力响应进行分析.结果表明,车辆质量越大,车辆数量越多,桥梁跨中截面的动力响应越大;随着车辆数量的增大,峰值位移或应力的波峰逐渐右移并呈现滞后性;随着车辆间距的增大,车辆对桥梁的... 相似文献
15.
为选取风荷载及随机车流联合作用下合适的粘滞阻尼器参数,以温州市七都大桥为背景,基于变参数阻尼器的风-车-桥耦合振动分析系统,建立大桥有限元模型,研究风荷载、特定车载、风荷载及随机车流联合作用下不同参数粘滞阻尼器的减振效果。结果表明:风荷载下粘滞阻尼器对梁端、塔顶等部位纵向位移减振效率随速度指数α增大而减小,随阻尼系数C增大而增大,对塔梁间纵向相对位移减振效果最显著;特定车载下梁端纵向位移减振效率随速度指数α增大而增大,随阻尼系数C增大而减小,而塔顶纵向位移、塔梁间纵向相对位移随速度指数α增大而减小、随阻尼系数C增大而增大;风荷载及随机车流联合作用下粘滞阻尼器对梁端纵向位移的减振效率随速度指数α减小而增大,随阻尼系数C增大而增大;综合考虑减振效果及经济性,确定温州市七都大桥粘滞阻尼器优化阻尼系数C为1 500kN·(m/s)-α、速度指数α为0.1。 相似文献
16.
为将梁格法车-桥耦合分析系统提升至同时考虑结构整体响应及局部应力分析的精细化实体车-桥耦合分析系统,首先,基于最小势能原理推导八节点六面体实体有限单元列式,采用等参插值确定单元的协调位移,引入Wilson非协调位移模式,消除一阶单元在弯曲变形分析中的剪切自锁,提高单元的分析精度和计算效率;采用静/动力分析算例对所构造非协调八节点六面体单元(ICH8)的准确性进行验证;其次,基于车轮与桥面接触实体单元间的位移协调和力的平衡关系,采用非线性分离迭代法建立实体车-桥耦合分析系统,编制自主研发的精细化分析模块;再次,融合Monte-Carlo灵敏度分析与遗传算法构建桥梁实体有限元模型修正方法,并借助现场静载测试结果对目标桥梁实体有限元模型进行修正;最后,联合修正的桥梁实体有限元模型与跑车工况测试结果验证所建立实体车-桥耦合分析系统的准确性。结果表明:由所建立的实体车-桥耦合分析系统得到的桥梁动力响应与实测响应吻合良好,从而验证了该分析系统的可靠性。借助所建立的实体车-桥耦合分析系统,不仅可实现时域内桥梁结构的整体内力分析,同时还可实现桥梁结构的局部应力分析,包括局部构件的应力分布和应力集中等,对当前车-桥耦合振动领域分析工具具有一定的改进和提升。 相似文献
17.
18.
19.