首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
为探究活动支座摩阻对大跨连续梁桥上无缝线路梁-轨相互作用的影响,基于梁-轨相互作用及有限元理论,将活动支座摩阻等效为非线性弹簧,建立可考虑活动支座摩阻的连续梁桥上无缝线路空间耦合模型,对考虑活动支座摩阻前、后的钢轨及桥墩结构受力变形展开对比分析。结果表明,活动支座摩阻增强了连续梁与无缝线路的纵向约束,当活动支座摩阻率从0增大至0.06时,温度作用下,连续梁桥上钢轨纵向力及梁轨相对位移峰值分别减小了24.32%和29.89%,连续梁桥固定墩纵向力增加了2.44倍;制动荷载作用下,钢轨制动力、梁轨相对位移及连续梁桥固定墩纵向力分别减小了53.51%、56.94%和41.63%;断轨工况下,部分断轨力通过活动支座摩阻传递给非固定墩,连续梁桥固定墩纵向力减小了60.64%,钢轨断缝值减小了3.3%;活动支座摩阻对大跨连续梁桥上无缝线路及桥墩纵向力影响较大,建议在大跨连续梁桥上无缝线路及桥墩设计中考虑活动支座摩阻的影响。  相似文献   

2.
温度跨度对桥上无缝线路钢轨伸缩附加力影响很大,是设置钢轨伸缩调节器的关键因素之一。基于连续刚构梁桥墩纵向水平刚度以及两侧简支梁支座布置对桥上无缝线路受力变形的影响,采用理论分析和ANSYS有限元软件研究了连续刚构梁桥上无缝线路温度跨度。结论表明刚构墩刚度越大,温度力作用下钢轨伸缩附加力越小,桥梁变形越小,但影响很小;制动力作用下,梁轨快速相对位移和钢轨制动附加力越小,但影响较大。分析时一般可将连续刚构梁桥简化为仅有一个固定支座且位于其几何中点处的连续梁,温度跨度即为该点到相邻一跨(联)桥上固定支座之间的距离,分析计算精度可满足桥上无缝线路设计检算的需要。研究结果对我国大跨度连续刚构桥桥上无缝线路的建设有着重要的指导作用。  相似文献   

3.
桥梁的温度跨度是影响桥上无缝线路附加力的最重要的因素之一,合理的布置桥梁支座可以有效地减小钢轨伸缩力。综合考虑钢轨、轨枕、扣件、道床及梁跨结构相互作用,建立了连续梁桥上无缝线路梁-轨相互作用模型,重点分析了桥梁支座布置对钢轨伸缩力的影响,通过计算,优化桥梁支座布置形式,减小了钢轨附加力,对桥上无缝线路的设计有一定的指导意义。  相似文献   

4.
针对目前城市轨道桥梁支座损坏严重、需要更换的问题,从桥梁顶起状态下的钢轨温度力、伸缩附加力、桥梁支座顶起附加力、扣件受力等方面,对桥上无缝线路做了具体计算;分析不同工况下更换支座对桥上无缝线路轨道结构及部件的影响,并根据计算结果提出施工建议。  相似文献   

5.
本文通过对高速铁路多联大跨连续梁桥上无缝线路设计方案的研究,提出高速铁路多联大跨连续梁桥上无砟无缝线路设计原则及设计方案。研究结果表明:多联大跨连续梁桥上无砟无缝线路设计应优先通过调整固定支座位置,减小桥梁温度跨度,且使各温度跨度尽量均匀分布,以达到不设钢轨伸缩调节器并使桥梁墩台受力不至于过大的目的;必须设置钢轨伸缩调节器时,应对其设置数量进行优化,以尽量少设钢轨伸缩调节器。梁端设置伸缩调节器时,应优先采用单向钢轨伸缩调节器。  相似文献   

6.
针对双固定墩对桥上无缝线路纵向力的影响开展研究,以某市域铁路为实际工程背景,基于梁轨相互作用原理、非线性有限单元法,建立线-桥-墩一体化计算模型,分析温度变化、列车制(启)动以及断轨工况下双固定墩简支梁桥上无缝线路纵向力变化规律,并以规范要求进行轨道力学检算。计算结果表明,相比普通桥上无缝线路而言,双固定墩对钢轨最大伸缩及制动拉力影响不大,但显著提高伸缩压力的峰值;双固定墩所受纵向力近似为0,但与双固定墩相邻桥墩承受的纵向力增幅达到50%左右;当钢轨在双固定墩处折断时,双固定墩对钢轨断缝有抑制作用;从桥上无缝线路受力角度考虑,当墩刚度低于500 kN/(cm·单线)时,双固定墩桥上无缝线路无需单独进行轨道力学检算,桥梁专业按规范取值进行桥墩检算即可满足工程设计需求。研究结果可为双固定墩桥上无缝线路轨道系统和墩台设计提供参考。  相似文献   

7.
多联大跨连续梁由于桥梁联数较多,温度跨度联数及长度均较大,桥上无缝线路设计需设置多组钢轨伸缩调节器,采取调整连续梁固定支座位置的方式合并相临温度跨,可减少大温度跨度联数,进而达到减少钢轨伸缩调节器设置数量的目的。结合郑西客运专线渭南二跨渭河特大桥多联大跨连续梁桥上无缝线路设计,建立"钢轨-桥梁-墩台"一体化有限元模型进行钢轨纵向附加力的检算,检算结果表明,采用优化桥梁固定支座布置的方式可减少钢轨伸缩调节器设置数量。  相似文献   

8.
京九上行线东江特大桥无缝线路设计   总被引:1,自引:1,他引:0  
京九上行线铺设无缝线路,需对总联长为336 m连续梁的东江特大桥进行单独设计.根据当地轨温变化幅度小,桥上无缝线路不设伸缩调节器的特点,分析桥上无缝线路的力学特征,介绍了东江特大桥桥上无缝线路设计,包括无缝线路构造、附加力计算以及线路、桥梁墩台与支座的验算.  相似文献   

9.
为指导高速铁路跨海超长联连续梁桥上无砟轨道无缝线路设计,基于梁轨相互作用原理及多体动力学理论,通过建立无砟轨道-多跨连续梁桥静力学分析模型与高速车辆-无砟轨道-连续梁桥耦合动力学分析模型,对超长联跨海连续梁桥上无砟轨道无缝线路的静、动力学特性进行分析研究。研究结果表明:(60+37×80+60) m连续梁温度跨度超长,须铺设钢轨伸缩调节器以降低钢轨应力;进行超长联跨海连续梁桥上无缝线路设计与检算时,应考虑活动支座摩阻力的贡献和影响;设置伸缩调节器后,连续梁桥上无缝线路钢轨受力、断缝值等各指标均能满足安全性要求;列车荷载作用下,车辆、轨道、桥梁的各项指标均满足动力性能评价要求;为保证轨道系统安全服役,建议加强混凝土连续梁伸缩调节区域轨道状态的调整、在线监测与科学维护。  相似文献   

10.
桥上纵连板式无砟轨道无缝线路力学性能分析   总被引:1,自引:0,他引:1  
基于有限元法,考虑钢轨、无砟道床、滑动层、桥梁等结构的相互作用关系,建立桥上纵连板式无砟轨道无缝线路纵-横-垂向空间耦合模型,进行滑动层摩擦系数、扣件纵向阻力、无砟道床伸缩刚度等对桥上纵连板式无砟轨道无缝线路的受力和变形影响规律的研究.结果表明:滑动层减弱了桥梁、轨道间的相互作用,当滑动层摩擦系数为0.1~0.5时,无缝线路伸缩力仅为22.821~55.361 kN,远小于一般桥上无缝线路结构;滑动层摩擦系数越小越有利于轨道和桥梁结构的安全使用;底座板/轨道板的伸缩刚度减小会明显增大部分轨道和桥梁的受力,伸缩刚度折减至10%时,伸缩力会增大近6倍,因此应该注意控制底座板和轨道板的开裂现象;扣件的纵向阻力变化对轨道和桥梁结构的受力和变形几乎没有影响,但为了防止钢轨爬行或断缝值超限,扣件阻力不宜太小.  相似文献   

11.
介绍铜九线鄱阳湖特大桥桥上无缝线路纵向力的计算和无缝线路结构设计,比较桥上无缝线路钢桁梁设置钢轨伸缩调节器的两种方案,计算无缝线路作用在桥梁上的伸缩力,以供类似设计参考。  相似文献   

12.
对于大跨、大坡道和小半径曲线桥梁,梁轨相互作用关系更加复杂、附加作用力及断轨时的断缝值也较大,给桥上铺设无缝线路结构带来困难。为研究高速铁路大跨刚构-连续组合梁桥无缝线路铺设方案,以新建贵广铁路圣泉1号特大桥为工程背景,建立线-桥-墩一体化有限元计算模型,分析不同结构方案下线、桥纵向受力情况。研究结果表明:对于圣泉1号双线特大桥桥上无缝线路,铺设小阻力扣件、钢轨伸缩调节器、调节锁定轨温等常规设计方案无法同时满足强度、稳定性、断缝值等检算指标的需求,建议采取"伸缩调节器+道砟胶"的技术方案。  相似文献   

13.
中小跨度长联连续梁桥桥上无缝线路纵向力的研究   总被引:4,自引:1,他引:3  
针对固定墩组和拉压连接器两种桥梁结构,分析计算长联连续梁桥无缝线路纵向力。根据桥梁、钢轨的相互作用关系,建立纵向力计算模型,应用该模型,分析比较了桥梁联长、桥墩刚度以及轮轨粘着系数对纵向力的影响。根据附加纵向力的大小以及长钢轨伸缩位移量,提出了长联连续梁的最大联长,在连续梁中间设置钢轨伸缩调节器时,固定墩组桥梁体系连续梁联长应小于500m~600m,拉压连接器桥梁体系连续梁联长应小于1000m~1200m。研究结果表明,桥上无缝线路长钢轨的附加纵向力与桥墩的刚度有关,刚度减小,长钢轨的附加纵向力增加,对桥上无缝线路的强度和稳定性不利,根据长钢轨附加制动力的大小,提出了不同联长的连续梁桥墩刚度的最小限值。  相似文献   

14.
基于梁轨相互作用原理,采用有限元方法建立线-桥-墩一体化计算模型,以多跨简支梁和连续梁为例,分析不同墩台刚度对桥上无缝线路计算的影响。计算结果表明:钢轨伸缩力与伸缩位移、墩台纵向力均随着墩台纵向水平刚度的增大而增大,但增加幅度逐渐减缓;墩台自身的纵向水平位移会改变梁轨系统的纵向受力情况,当桥梁墩台自身位移较大时,应在桥上无缝线路纵向力计算中考虑其作用;钢轨挠曲力随着墩台刚度增大而增大,桥墩纵向水平刚度对钢轨制动力及梁轨相对位移的影响较为明显,应据此设定其对墩台最小水平刚度的限值;墩台刚度越大,钢轨断缝值越小。为满足断缝值不超限,桥梁墩台设计时应合理确定其纵向水平刚度值。  相似文献   

15.
钢轨伸缩调节器是高速铁路重要的轨道部件之一,可协调长大桥梁因梁体温差引起的梁端伸缩位移和长钢轨的伸缩位移,使桥上无缝线路在运营过程中释放钢轨温度力,从而减小轨道及桥梁所承受的无缝线路纵向力。本文以西宝客运专线咸阳渭河特大桥钢轨伸缩调节器为研究对象,通过轨道状态监测并结合养护维修情况分析其运营状态。将运营期间存在的病害情况进行了系统的归纳,分析了病害原因,总结了现阶段采取的整治措施,并针对该桥上钢轨伸缩调节器养护维修给出了建议。  相似文献   

16.
为科学合理地确定不设钢轨伸缩调节器的桥梁温度跨度,通过建立线桥墩一体化计算模型,研究各种因素对有砟桥上无缝线路最大温度跨度的影响。研究结果表明:钢轨顶面垂磨增大,最大温度跨度逐渐减小;墩顶纵向水平位移增大,最大温度跨度与墩顶位移近似成等比例减少;制动力对钢轨升温幅度较大时的最大温度跨度有一定影响;大机维修所确定的温度跨度要比大机清筛的小;为减缓地震对桥梁纵移、横移的影响,高速铁路桥梁设计中应采用防落梁装置。综合分析后,考虑了轨温变化幅度、墩高2个影响因素,得出了桥梁温度跨度极值的建议值,如最大墩高小于30m,轨温变化幅度分别为30,40和50℃时,温度跨度极值分别建议为320,300和280m。  相似文献   

17.
客运专线桥上无缝道岔空间力学特性的研究   总被引:5,自引:0,他引:5  
为解决哈大客运专线红嘴河特大桥桥上无缝道岔受力和变形问题,根据道岔、桥梁结构和布置形式,建立桥上无缝道岔空间耦合模型,从温度荷载、竖向荷载、钢轨横向变形等方面对其空间力学特性进行分析.结果表明:温度荷载下钢轨的伸缩附加力最大值位于梁体活动支座端,受固定支座端至活动支座端距离影响较大;尖轨、心轨尖端相对于基本轨、翼轨的位移较小,处于外锁闭机构允许的伸缩量范围之内;连续梁半联满布荷载时,钢轨纵向位移、挠曲附加力及桥梁竖向挠度最大;单线直向满布荷载时,桥梁横向挠度、扭转最大;温度荷载对钢轨横向变形的影响较小,减载率、脱轨系数变化不大.但由于客运专线标准高、道岔与桥梁结构复杂等因素,对钢轨横向变形的影响不容忽视,建议设计客运专线桥上无缝道岔时考虑其空间力学特性.  相似文献   

18.
研究目的:因桥上无缝线路梁轨相互作用较为复杂,桥梁和轨道结构的受力与变形特性成为国内外学者的热点研究问题。为研究温度荷载、列车荷载和制动荷载作用下轨道结构的受力与变形规律及影响因素,根据嵌入式轨道的特点,本文通过建立嵌入式轨道桥上无缝线路有限元模型,计算伸缩力、挠曲力和制动力三种工况下轨道结构的受力与变形情况,并分析梁体温差、高分子材料纵向阻力和墩台纵向刚度对伸缩力的影响。研究结论:(1)嵌入式轨道的线路纵向阻力和垂向刚度均为线性变化,且轨板相对位移限值为6.2 mm;(2)轨道结构的受力和变形均随着梁体温差的增加而线性增加,允许梁体温差为38℃;随着线路纵向阻力的增加,钢轨纵向位移和伸缩力逐渐增大,而轨板相对位移则逐渐减小;桥梁墩台纵向刚度对轨道结构的受力和变形影响较小;(3)在挠曲力和制动力工况下,轨板相对位移和钢轨附加力均较小,故在设计时应重点关注伸缩力工况;(4)当梁体温差和轨温变化幅度为30℃时,钢轨强度和轨板相对位移均满足要求,因此在32 m简支梁上铺设有轨电车嵌入式轨道无缝线路是可行的;(5)本研究成果对桥上有轨电车嵌入式轨道设计具有参考价值。  相似文献   

19.
大跨度多跨连续梁桥上无缝线路结构设计,不仅在于合理的设置钢轨伸缩调节器及轨道结构,而且固定支座的合理布置同样对减小梁、轨之间的相互作用,并防止线路爬行,保证轨道结构的安全也起着至关重要的作用,本文以某大跨度多跨连续梁桥为例,选定合理的轨道结构型式及桥梁支座布置型式,计算分析伸缩调节器的设置及桥梁固定支座布置对桥上无缝线路纵向力的影响.  相似文献   

20.
准朔铁路黄河特大桥拱上简支T梁支座布置研究   总被引:1,自引:0,他引:1  
研究目的:准朔铁路黄河特大桥是朔州至准格尔新建铁路重要工程,大跨度上承式拱桥拱上桥墩纵向位移由桥墩和拱肋变形两部分组成,拱上简支T梁支座布置对拱肋结构的受力影响较大,因此需要通过合理的支座布置方案降低拱上高墩的纵向水平位移,降低纵向水平力对拱肋产生的不利影响。研究结论:(1)相邻桥墩纵向最大相对位移发生在交界墩与拱脚G1和G12号墩之间;(2)拱脚第一孔简支梁梁端需要采取大位移量纵向活动支座和伸缩装置,并设置纵、横向防落梁措施;(3)大跨度拱上桥墩墩顶位移对桥上无缝线路的影响较大,桥上无缝线路应采取小阻力扣件来适应桥墩变形要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号