首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The integrity of mooring chains is essential to the safety of a range of offshore platforms. However, mooring line failures are occurring earlier than their design lives, with a high number of these failures occurring due to fatigue. Early in the fatigue life of the component fatigue initiation processes occur, where the fatigue hotspot is sensitive to the mean load and there is plastic strain accumulation from the multiaxial stress-strain responses of the material, leading to cyclic plastic damage accumulation. The traditional SN approach suggested by mooring standards does not consider these effects, and it is proposed that this lack of consideration under low-cycle fatigue conditions is the reason for the current non-conservative fatigue assessments of mooring chains. This paper aims to develop a fatigue approach based on a critical plane multiaxial fatigue criterion for mooring chains that can consider the damage-induced by the cyclic plasticity and the mean load effect, to investigate the importance of incorporating low-cycle fatigue into the mooring chain life prediction. To develop the critical plane approach, the multiaxial stress-strain states are extracted for the critical plane at the fatigue hotspot from a finite element model of a mooring chain. This is then correlated with a fatigue life prediction provided by conventional fatigue design data. It uses a simulation of an FPSO as a case study to demonstrate the importance of low cycle fatigue, which shows that the mean load effect is significant in reducing the fatigue life for mooring chain applications, while the effect of fatigue damage-induced cyclic plasticity is limited. The fatigue damage accumulation predicted by the critical plane approach is significantly higher than that of the traditional SN approach and should be accounted for in mooring line design.  相似文献   

2.
Failures caused by the combined actions of fatigue, corrosion and wear are important safety concerns for mooring chains used on floating structures in the oil and gas industry. Prediction of remaining corrosion fatigue life based on surface condition could therefore be a useful tool for the continued safe operation of corroded chains. This paper investigates the use of crack growth modelling for estimating the remaining corrosion fatigue life of mooring chains that exhibit significant pitting corrosion damage. A crack growth modelling approach is used to produce remaining fatigue life estimates for a selection of severely pitted mooring chains. Using fatigue crack growth rate test results for grade R4 high strength mooring chain steel, empirical crack growth laws are presented for free corrosion and cathodic protection conditions at load ratio R = 0.1. Two different methods for establishing equivalent cracks from surface scans of corrosion damage are presented. The mooring chains are proof loaded as part of their manufacturing process. Residual stresses introduced during this process have therefore been determined by finite element analysis and accounted for in the fatigue crack growth predictions. One of the equivalent crack models, accounting for the single dominant corrosion pit, provided quite accurate fatigue life predictions when compared with full scale test results.  相似文献   

3.
考虑塑性损伤的船体裂纹板低周疲劳裂纹扩展行为研究   总被引:1,自引:0,他引:1  
邓军林  杨平  陈远 《船舶力学》2017,21(12):1507-1526
船舶结构的扩展断裂失效往往是低周疲劳破坏和累积递增塑性破坏耦合作用的结果,疲劳裂纹的扩展就是裂纹尖端前缘材料刚度不断降低延展性不断耗失而逐渐分离的结果.基于弹塑性断裂力学理论,文章提出了考虑累积塑性损伤的低周疲劳裂纹扩展速率预测模型.通过低周疲劳裂纹扩展试验拟合出模型相关材料参数并验证预测模型的合理性.通过系列有限元计算对平均应力及应力幅值的影响因素进行了数值分析.该模型的计算结果与已有实验结果基本吻合;对合理预估船体裂纹板的常幅低周疲劳裂纹扩展寿命有重要意义.  相似文献   

4.
董琴  杨平  邓军林  汪丹 《船舶力学》2015,(6):690-699
船体板的总体断裂破坏往往是低周疲劳破坏与累积塑性破坏两种破坏模式耦合作用的结果,故在船体板低周疲劳裂纹扩展寿命评估中,其基于累积塑性应变的船体板低周疲劳裂纹扩展寿命分析能够更为符合实际地评估船体板的总体断裂承载能力。船体板低周疲劳裂纹扩展寿命由宏观可检测裂纹扩展到临界裂纹而发生破坏这段区间的寿命。船体在实际航行中受到多次波浪外载作用而使其进入塑性变形不断累积或不断反复的破坏过程,并最终导致低周疲劳裂纹的萌生及扩展而使结构破坏,其破坏形式分别对应于增量塑性变形破坏(或棘轮效应)或交变塑性变形破坏(或低周疲劳)。局部塑性变形的累积会加剧低周疲劳裂纹不断扩展,因而基于累积塑性破坏研究船体板低周疲劳扩展寿命更为合理。文中以船体板单次循环载荷后塑性应变大小为基础,依据累积递增塑性破坏过程及弹塑性理论,计算经过N次变幅循环载荷后船体板累积塑性应变值,结合循环应力—应变曲线获得相应的稳定的迟滞回线,确定裂纹尖端应力应变曲线及确定相关塑性参量并依据选取的断裂判据判定裂纹扩展。建立循环载荷下基于累积递增塑性破坏的船体板低周疲劳裂纹扩展寿命的计算模型考虑应力比对此裂纹扩展寿命计算模型的影响。由该方法计算出的疲劳裂纹扩展寿命将对正确预估船舶结构的低周疲劳强度从而提高船舶安全性有重要意义。  相似文献   

5.
董琴  杨平  徐庚  姜伟 《船舶力学》2018,22(6):771-782
文章对AH32钢在循环载荷下低周疲劳破坏和累积塑性破坏的交互作用进行了试验研究.试验中分析了平均应力、应力幅值及应力比对低周疲劳裂纹扩展寿命和累积塑性应变的影响.试验结果表明,较大的循环载荷下发生两种失效模式,由裂纹扩展导致的低周疲劳失效和较大的塑性应变导致的累积塑性破坏.在试验结果的基础上,文中提出了考虑低周疲劳破坏和累积塑性破坏交互作用的失效模型,模型结果与试验结果较为吻合,说明其具有一定的可行性.  相似文献   

6.
从低周疲劳损伤可由疲劳过程中的非弹性响应来反映的理念出发,以循环弹性余应变能密度来表征循环应力应变曲线的非线性部分偏离线性的程度,建立了基于循环弹性余应变能密度为基本参量预测低周疲劳寿命的新方法。采用30CrNiMo8钢的疲劳试验结果和文献中对某高温合金的疲劳试验结果,对该预测模型的预测结果和Manson-Coffin公式、三参数幂函数模型预测结果进行了对比分析,结果表明,文中提出的预测模型的预测结果与试验结果吻合良好,预测精度高于Manson-Coffin公式的预测精度,并接近或高于三参数幂函数模型的预测精度。  相似文献   

7.
为了用解析方法合理地描述疲劳裂纹扩展的三个阶段,提出了一种新的疲劳裂纹扩展模型——正切模型。该模型驱动力使用应力强度因子幅值K,能够描述裂纹扩展的三个阶段,且只有四个参数需要确定。通过非线性拟合确定疲劳裂纹扩展正切模型中的四个参数。研究了门槛值Kth和失稳值Kf与应力比R的关系,以及四个参数对裂纹扩展速率的影响。最后比较了试验值、九参数模型和正切模型在疲劳裂纹扩展速率曲线和裂纹扩展长度变化曲线等方面的差别,发现正切模型结果与试验数据较为吻合。该模型描述的裂纹扩展长度变化曲线能够较好地用于疲劳寿命评估。  相似文献   

8.
腐蚀疲劳点蚀演化及腐蚀疲劳裂纹成核机制研究   总被引:1,自引:0,他引:1  
黄小光  王黎明 《船舶力学》2016,20(8):992-998
作为一种不可逆的热力学过程,腐蚀疲劳的点蚀演化伴随着体系能量的耗散。文章基于热力学原理,对腐蚀疲劳点蚀演化过程中的能量问题进行探索性研究。引入双变量点蚀模型,建立点蚀演化过程中体系热力学势函数,推导了点蚀形状参数在演化过程中的变化方程,并分析了体系应变能、表面能和电化学能对点蚀演化形貌的影响机制及规律。根据裂纹成核位错机理建立了腐蚀疲劳裂纹成核临界条件的能量准则,并与应力强度因子准则进行比较,分析结果验证了能量准则的合理性。  相似文献   

9.
本文考虑焊接残余应力的影响,给出包含裂纹萌生和裂纹扩展全过程的载人深潜器耐压球壳疲劳寿命预报方法,分别基于局部应力-应变法和能计及负应力比效应的裂纹扩展单一曲线模型预报了耐压球壳的工艺疲劳寿命和使用疲劳寿命,研究焊接残余应力大小对球壳疲劳寿命的影响。结果表明,忽略拉伸残余应力的影响将导致疲劳寿命预测结果偏于危险;耐压球壳整体受压时,拉伸残余应力使得球壳局部区域承受拉-压循环载荷,计算使用疲劳寿命过程中须考虑其影响;降低拉伸残余应力可有效提高耐压球壳的疲劳寿命。  相似文献   

10.
通过开展材料性能试验与分析,获取材料的循环应力-应变曲线,采用不同方法对Manson-Coffin公式中的疲劳常数进行估算,对R≠–1的应变-寿命曲线进行修正.运用雨流计数法计算得到结构的载荷谱,采用Neuber近似解法求出舵板结构的局部应力应变.分别应用道林公式和兰德格拉夫公式2种方法计算结构的累计损伤效应,并对2种方法的计算结果进行对比分析.提出采用应变能等效原则开展试件的疲劳寿命试验方法,试验结果与仿真计算结果较为近似.  相似文献   

11.
董琴  杨平  邓军林  汪丹 《船舶力学》2015,(12):1507-1516
裂纹尖端张开位移(CTOD)是研究大范围屈服的低周疲劳破坏的重要参数之一,其值可反映结构材料抵抗低周疲劳裂纹形成和扩展的能力,是评估结构材料韧性的重要参量以及分析低周疲劳破坏引起裂纹扩展的主要控制参量。文章基于弹塑性断裂力学理论,从循环J积分着手,以裂纹尖端累积塑性应变为重要参量,建立循环载荷下船体板CTOD理论模型,并在有限元模拟中分析了应力比、应力幅等相关因素影响。将本模型结果与有限元计算结果进行了比较,发现结果吻合良好。结果表明:在考虑累积塑性影响下,该模型能较好地反映在循环载荷下船体板CTOD的变化规律,同时也为正确评估循环载荷下船体板低周疲劳破坏与累积塑性破坏两种破坏模式耦合作用的总体断裂破坏提供了途径。  相似文献   

12.
HTS-A钢对接接头的双轴疲劳试验研究   总被引:1,自引:0,他引:1  
开展了HTS-A钢对接焊接试件的双轴疲劳试验.通过一组试件在纵向受弯和垂向受压循环载荷作用下的试验研究,得到了不同双轴载荷比情况下的试件断口形式及疲劳寿命.根据试验过程中记录的裂纹扩展数据,回归了不同载荷比情况下的Paris公式,从而推算裂纹扩展寿命.进而通过总寿命减去裂纹扩展寿命得到裂纹的萌生寿命.结果表明,垂向循环压力载荷缩短了试件的疲劳寿命,且对萌生寿命的影响大于对扩展寿命的影响.  相似文献   

13.
Creep and fatigue are involved in the loading of deep manned submersible, which is a rather complex variable amplitude pattern. Dwell effects resulting in lower life than pure fatigue are observed in the prior experimental research while no proper prediction methods are available to explain the phenomenon. Recently, the authors proposed a modified crack growth rate model to explain the creep effect under the cyclic loading which is validated for the crack growth of some titanium alloys under cyclic creep loading, however, its application is restricted to the condition where lots of parameters have to be determined based on many experiments and it is not very convenient in the material selection and primary design stage of a component. In this paper, a simplified prediction model for the load pattern of constant amplitude cyclic loading is proposed aiming at one of the most applicable materials for the pressure hull of submersibles, Ti–6Al–4V ELI. The method can be easily used to estimate the life of the pressure hull based on two series of basic mechanical properties of the material and validated by the modified crack growth rate model with parameters determined by large amounts of experimental data.  相似文献   

14.
本文针对深海载人潜水器耐压壳用钛合金,开展疲劳性能试验研究,得到该类型钛合金的室温断裂韧性,载荷比R=0.1下的疲劳裂纹扩展门槛值及疲劳裂纹扩展速率,基于选用的疲劳裂纹扩展预报模型,对载荷比R=0.1下的钛合金疲劳裂纹扩展行为进行了预报研究。结果表明:在载荷比不变的前提下,应力强度因子范围是疲劳裂纹扩展速率的主要影响因素,应力强度因子范围的增加会导致疲劳裂纹扩展速率增加;考虑小裂纹效应的疲劳裂纹扩展预报模型可对钛合金的疲劳裂纹扩展行为进行准确预报。  相似文献   

15.
This paper presents experimental assessment of crack growth rates of S355J2+N steel in a corrosion fatigue environment similar to what is experienced on offshore wind farm monopile structures under various cyclic load frequencies in order to assess the effect of cyclic frequency of the applied loading within a frequency range pertinent to the structure. Fatigue crack propagation behaviour in this test programme is evaluated through fatigue tests on six compact tension test specimens in air and in laboratory simulated seawater under free corrosion condition. Fatigue crack lengths were monitored by back face strain (BFS), DCPD and ACPD. A regression model was derived through the BFS method to express strain values as a function of crack length to width ratio. The effectiveness of BFS method is particularly demonstrated in the simulated marine environment. Within the range of test frequencies, crack growth rates in simulated seawater when compared to the equivalent air test revealed environmental reduction factors of 2 and 4 at lower and higher values of stress intensity factors respectively. Significant difference in the results of the seawater test frequencies is discussed.  相似文献   

16.
Detailed understandings on the fatigue behavior of the concrete-filled double skin steel tubes (CFDSTs) under multiaxial stress states are essential to promote their applications in marine structures. A systematical investigation consisting both the experimental study and the according numerical modeling has been conducted. Physical tests were carried out to investigate the flexural fatigue behavior of the butt-welded hollow steel tubes (HSTs), concrete-filled steel tubes (CFSTs) and CFDSTs, in which the development of fatigue cracks and the fatigue life were captured. The feasibility of applying the existing SN curves originally obtained from the HSTs to the constitutive steel tubes within the CFDSTs has been consequently verified. A two-stages simulation method was developed to analyze the full range development of fatigue cracks based on both the damage mechanics and the extended finite element method (XFEM). The influence of the multiaxial stress states on the fatigue behavior for the constitutive steel tubes was studied quantitatively, considering the offshore application scenarios where the steel tubes within the CFDSTs were subjected to larger external hydrostatic pressure or internal transmitted content pressure. The results show that the existence of the infilled concrete can effectively improve the fatigue behavior of the steel tubes. The life prediction models for both the fatigue crack initiation stage and propagation stage have been proposed, where the crack initiation life of the steel tube may reduce by 30% when its stress triaxiality increases from 0.36 to 0.48.  相似文献   

17.
潜艇在潜浮过程中,由于静水外压引起的工作应力与焊接残余应力叠加,形成拉压循环应力,导致耐压船体的局部结构可能出现低周疲劳裂纹.一般情况下,高强度钢在抗拉强度提高的同时往往伴随着材料塑性储备和断裂韧性的下降,因此分析高强度钢潜艇结构的低周疲劳寿命非常重要.本文基于断裂力学和Paris公式建立了潜艇耐压结构低周疲劳寿命的工程估算方法,根据裂纹无损检测的概率统计和含裂纹圆柱壳极限应力分析,给出了初始裂纹和裂纹临界状态的建议值.应用本文的简化方法分析了某潜艇结构和锥柱结合壳模型的低周疲劳寿命,锥柱结合壳模型的数值算例表明本文的计算结果与试验测试结果相吻合.  相似文献   

18.
邓军林  杨平  马丽  钱祎 《船舶力学》2018,22(3):325-338
船舶结构的扩展断裂失效往往是低周疲劳破坏和累积递增塑性耦合作用的结果,疲劳裂纹的扩展就是裂纹尖端前缘材料刚度不断降低、延展性不断耗失而逐渐分离的过程。基于弹塑性断裂力学理论,文章在作者对常幅载荷下提出的考虑累积塑性损伤的低周疲劳裂纹扩展速率预测模型的基础上对具有单个过载峰的拉伸/压缩过载下的扩展行为进行了研究。通过低周疲劳裂纹扩展试验进一步验证了该预测模型能合理评估具有单个过载峰的拉伸/压缩过载下的低周疲劳裂纹扩展行为。  相似文献   

19.
The present work is motivated by the increasing need for cost-efficient solutions in offshore structural systems for wind energy production and for improvement of their structural performance. The structural behavior and design of high-strength steel welded tubular connections (yield strength higher than 700 MPa) subjected to monotonic and strong cyclic loading is investigated. In the first part of the paper, an experimental investigation is presented on high-strength steel tubular X-joints subjected to monotonic and cyclic loading far beyond the elastic limit of the material, leading to weld fracture. Two grades of weld metal material are employed in the welding process of the specimens. The experimental results indicate that the weld material grade has a significant influence on the deformation capacity of the welded connection under monotonic loading conditions, and its low-cycle fatigue life. The experimental procedure is simulated using advanced finite element models, elucidating several features of joint behavior and complementing the experimental results. Overall, a good agreement is found between numerical simulations and experimental results, in terms of both global response and local strains at the vicinity of the welds. Furthermore, the structural performance of the welded tubular joints under consideration is assessed using available design methodologies in terms of both ultimate strength and low-cycle fatigue resistance, in an attempt to validate an efficient design methodology for low-cycle fatigue. The results from this research effort are aimed at developing the necessary background for the possible use of high-strength steel in tubular steel lattice structures, particularly in offshore platforms for renewable energy production. They can also be used as a basis for the possible amendment of relevant design specifications and recommendations for including special provisions for high-strength steel structural systems.  相似文献   

20.
Ship structures are submitted to variable cyclic loading during navigation. The cyclic motion of waves induces variable and complex loadings in the structure, which could generate fatigue damage. Moreover, most of these metallic structures are welded assemblies. This technique generates local stress concentrations at the weld toe, which becomes a critical area regarding fatigue. In previous works, a methodology to predict fatigue life was developed and tested on butt-welded and cruciform joints. The present work focuses on other welded assemblies in order to extend fatigue crack initiation life evaluation to a wider range of ship details. The strategy could be split into two steps. First, a finite element calculation is performed under constant or variable amplitude loadings, in order to analyze the elastic shakedown of the structure. To characterize the material heterogeneity of the welded joint, experimental tests together with micro-hardness measurements, are performed on a simulated heat-affected zone. If there is a shakedown in the structure, a post-treatment is applied to predict the fatigue crack initiation. It is based on a two-scale damage model, initially developed by Lemaitre et al. and again includes the heterogeneity of fatigue properties. To validate this methodology, some experimental tests have been performed on welded assemblies which are typical of shipbuilding applications, using a fatigue machine. These comparisons between experimental and numerical fatigue lives are encouraging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号