首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New and efficient installation concepts which can reduce the cost of developing an offshore wind farm are of particular interest. This paper explores a promising concept using the small water-plane area twin-hull vessel (SWATH) to install pre-assembled wind turbines (OWT) onto floating spar foundations. A focus is placed on the hydrodynamic performance of the SWATH and the response analysis of the coupled SWATH-spar system. Firstly, the numerically calculated difference-frequency wave force effect and damping forces of the original SWATH were verified with experimental data. Secondly, the original SWATH was modified to satisfy the criteria of weight-carrying capacity and hydrostatic stability. Thirdly, a multibody numerical model for the SWATH-spar system was developed, in which the hydrodynamic and mechanical couplings between the SWATH and a spar were considered. The SWATH is equipped with a dynamic positioning system to counteract the slow-drift wave force effects. The nonlinear time-domain simulations were carried out for the mating stage when a wind turbine is lifted above the spar foundation. Based on the analysis of statistics of the relative displacement and velocity of the tower bottom and the spar top, the installation concept with SWATH is found to be of decent performance. Finally, recommendations are provided for future research on this concept, which contributes to developing next-generation installation concepts for bottom-fixed and floating wind farms.  相似文献   

2.
The application of floating wind turbines is limited by the high cost that increases with the water depth. Offshore installation and maintenance continue to consume a high percentage of the project budget. To improve the installation efficiency of the floating offshore wind turbine, a novel concept is proposed by the SFI MOVE project. Several wind turbine superstructure components are preassembled onshore and carried to the installation site by a catamaran construction vessel. Each assembly can then be installed using only one lift, and the concept is less sensitive to weather conditions. In this paper, a control algorithm of the proposed hydraulic active heave compensator system is developed using singular perturbation theory to cancel the relative motion between the spar top and gripped preassembly bottom. Closed-loop stability is proven, and the simulation results show that the installation efficiency is improved with an increase in the acceptable weather conditions.  相似文献   

3.
The concept of a shared mooring system was proposed to reduce mooring and anchoring costs. Shared moorings also add complexity to the floating offshore wind farm system and pose design challenges. To understand the system dynamics, this paper presents a dynamic analysis for a dual-spar floating offshore wind farm with a shared mooring system in extreme environmental conditions. First, a numerical model of the floating offshore wind farm was established in a commercial simulation tool. Then, time-domain simulations were performed for the parked wind farm under extreme wind and wave conditions. A sensitivity study was carried out to investigate the influence of loading directions and shared line mooring properties. To highlight the influence of the shared line, the results were compared to those of a single spar floating wind turbine, and larger platform motions and higher tension loads in single lines are observed for the wind farm with shared moorings. The loading direction affects the platform motions and mooring response of the floating offshore wind farm. Comparing the investigated loading directions to the 0-deg loading direction, the variation of mean mooring tension at the fairlead is up to 84% for single lines and 16% for the shared line. The influence of the shared line properties in the platform motions and the structural responses is limited. These findings improve understanding of the dynamic characteristics of floating offshore wind farms with a shared mooring system.  相似文献   

4.
Several floating wind turbine designs whose hull designs reflect those used in offshore petroleum industry have emerged as leading candidates for the future development of offshore wind farms. This article presents the research findings from a model basin test program that investigated the dynamic response of a 1:50 scale model OC3 spar floating wind turbine concept designed for a water depth of 200 m. In this study the rotor was allowed to rotate freely with the wind speed and this approach eliminated some of the undesirable effects of controlling wind turbine rotational speed that were observed in earlier studies. The quality of the wind field developed by an array of fans was investigated as to its uniformity and turbulence intensity. Additional calibration tests were performed to characterize various components that included establishing the baseline wind turbine tower frequencies, stiffness of the delta type mooring system and free decay response behaviour. The assembled system was then studied under a sequence of wind and irregular wave scenarios to reveal the nature of the coupled response behaviour. The wind loads were found to have an obvious influence on the surge, heave and pitch behaviour of the spar wind turbine system. It was observed from the experimental measurements that bending moment at the top of the support tower is dominated by the 1P oscillation component and somewhat influenced by the incoming wave. Further it was determined that the axial rotor thrust and tower-top shear force have similar dynamic characteristics both dominated by tower’s first mode of vibration under wind-only condition while dominated by the incident wave field when experiencing wind-wave loading. The tensions measured in the mooring lines resulting from either wave or wind-wave excitations were influenced by the surge/pitch and heave couplings and the wind loads were found to have a clear influence on the dynamic responses of the mooring system.  相似文献   

5.
The development of robust design tools for offshore wind turbines requires knowledge of both wave and wind load models and response analysis. Verification of the numerical codes is required by the use of experiments and code-to-code comparisons. This paper presents a hydroelastic code-to-code comparison between the HAWC2 and USFOS/vpOne codes for a tension leg spar (TLS) wind turbine with a single tether. This concept is hence based on the TLP and Spar concepts. The comparison is performed using coupled hydroelastic time domain simulations. Several aspects of modelling, such as wave simulation, hydrodynamic and structural modelling, are addressed for the TLS. Wave-induced motions of the support structure affect the power performance of a wind turbine. Furthermore, overload of the tension leg should be avoided. In this paper, the motion and tension responses are compared. The tension leg introduces nonlinear effects on the spar motion. These nonlinear effects include combined-frequency effect such as double, difference and sum of wave, as well as natural pitch and surge frequencies. Hydrodynamic loads are based on a combination of the Morison formula and the pressure integration method. A comparison indicates that the motion and tension responses obtained in the two codes are in good agreement.  相似文献   

6.
浮式海上风力机运动性能和锚泊系统(英文)   总被引:2,自引:0,他引:2  
The development of offshore wind farms was originally carried out in shallow water areas with fixed(seabed mounted) structures.However,countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas.The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform.This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine(FOWT) system.The wind turbine was modeled as a wind block with a certain thrust coefficient,and the hydrodynamics and mooring system dynamics of the platform were calculated by SESAM software.The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined.The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.  相似文献   

7.
文章基于三维时域势流理论和弹性细长杆理论,研究并提出了深海系泊浮体物面非线性时域耦合动力分析方法。该方法采用时域物面非线性理论方法在瞬态位置直接时域模拟系泊浮体所需水动力,结合有限元方法计算系泊缆索的动力响应,利用异步耦合方法实现浮体和系泊缆索的时域耦合动力求解。既满足系泊浮体时域水动力耦合,又满足系泊浮体和系泊缆索动力耦合。通过对二阶非线性不规则波作用下深海系泊半潜式平台的时域耦合响应特性进行研究,将不同海况下物面非线性时域耦合静力响应和动力响应与间接时域耦合动力响应的三种方法计算结果进行比较。研究结果表明,系泊缆索动力响应明显,平台瞬态空间位置对垂荡低频运动影响较大,有必要在平台瞬时湿表面采用动力响应方法进行深海系泊浮体时域耦合响应分析。  相似文献   

8.
This paper deals with the feasibility of using a 5 MW drivetrain which is designed for a land-based turbine, on floating wind turbines. Four types of floating support structures are investigated: spar, TLP and two semi-submersibles. The fatigue damage of mechanical components inside the gearbox and main bearings is compared for different environmental conditions, ranging from cut-in to cut-out wind speeds. For floating wind turbines, representative wave conditions are also considered. All wind turbines are ensured to follow similar power curves, but differences in the control system (integral to different concepts) are allowed. A de-coupled analysis approach is employed for the drivetrain response analysis. First, an aero-hydro-servo-elastic code is employed for the global analysis. Next, motions, moments and forces from the global analysis are applied on the gearbox multi body model and the loads on gears and bearings are obtained. The results suggest that the main bearings sustain more damage in floating wind turbines than on land-based. The highest main bearing damage is observed for the spar floating wind turbine. The large wave induced axial load on the main shaft is found to be the primary reason of this high damage in the spar wind turbine. Apart from the main bearings - which are located on the main shaft outside the gearbox - other bearings and gears inside the gearbox hold damages in floating wind turbines equal or even less than in the land-based turbine. It is emphasized that the results presented in this study are based on a drivetrain with two main bearings, which considerably reduces the non-torque loads on the gearbox.  相似文献   

9.
为实现海上风力发电平台工作状态的准确预报,本文采用有限元软件建立浮式风力发电平台三维模型,完全时域耦合分析在不规则波作用下,浮式风力发电平台动力响应特性.通过时域结果对比分析可知,在风浪流同向作用下,浮式风力发电平台的运动响应幅值及系泊缆索顶端张力最大.通过运动响应时间历程曲线可知,横荡运动和横摇运动表现为低频特性,垂荡运动表现为波频特性,以上研究成果可为浮式风力发电机的优化设计提供一定的指导,并可为将来的相关试验提供一定参考.  相似文献   

10.
Installation complexities are one of the major challenges in the floating offshore wind turbine (OWT) industry. The modern concept introduced by the SFI-MOVE project is an effort to overcome the complexities by utilizing a low-height lifting mechanism. It is common to idealize a crane in the lifting mechanism as a rigid body since the structural deflections are smaller than the responses introduced by the other system components. However, structural flexibility can play an essential role in demanding offshore operations with smaller acceptable tolerances. In this study, lifting cranes are modeled using the finite element method and simplified by implementing equivalent 3D beam elements. Dynamic analysis is performed for various environmental conditions, and the responses of the crane structure and the OWT are calculated for each load case. This research reveals that crane structure flexibility influences the relative motion between a floating spar buoy and an OWT during mating operations. Crane structural flexibility contributes significantly to the OWT rotations. In addition, the response deviation between using rigid and flexible cranes increases as the excitation force increases. Therefore, it is recommended to consider the crane structural flexibility in the calculation when strict installation tolerances are needed.  相似文献   

11.
In designing the support structures of floating wind turbines (FWTs), a key challenge is to determine the load effects (at the cross-sectional load and stress level). This is because FWTs are subjected to complex global, local, static, and dynamic loads in stochastic environmental conditions. Up to now, most of the studies of FWTs have focused on the dynamic motion characteristics of FWTs, while minimal research has touched upon the internal load effects of the support structure. However, a good understanding of the structural load effects is essential since it is the basis for achieving a good design. Motivated by the situation, this study deals with the global load effect analysis for FWT support structures. A semi-submersible hull of a 10-MW FWT is used in the case study. A novel analysis method is employed to obtain the time-domain internal load effects of the floater, which account for the static and dynamic global loads under the still water, wind, and wave loads and associated motions. The investigation of the internal stresses resulting from various global loads under operational and parked conditions and the dynamic behavior of the structural load effects in various environmental conditions are made. The dominating load components for structural responses of the semi-submersible floater and the significant dynamic characteristics under different wind and wave conditions are identified. The dynamic load effects of the floating support structure are investigated by considering the influence of the second-order wave loads, viscous drag loads induced global motions, and wind and wave misalignments. The main results are discussed, and the main findings are summarized. The insights gained provide a basis for improving the design and analysis of FWT support structures.  相似文献   

12.
文章采用了空气动力、水动力、控制与弹性完全耦合的时域模拟方法研究了张力腿式浮式风机平台的动力响应.水动力载荷的计算采用了三维势流理论与Morison公式.空气动力载荷的计算采用了叶素动量理论和广义动态尾流理论.利用FAST软件得到了张力腿式浮式风机平台响应的时域结果,并分析了其动力响应特性.建立了描述平台纵荡运动的非线性微分方程,并采用了摄动方法求得其近似解,解释了纵荡运动中由非线性粘性效应引起的高频响应.对数值模拟结果的分析表明高频的响应分量对平台的动力性能有显著的影响.  相似文献   

13.
王涵  胡志强 《船舶工程》2018,40(1):99-105
以200 m作业水深的5 MW OC3单柱式浮式风力机为研究对象,采用FAST程序对其在不同海况下的运动进行全耦合时历数值计算,并与采用1∶50缩尺比模型试验所得时历结果进行对比,通过时域以及频域方法对平台主要自由度运动以及系泊拉力进行分析。研究发现:垂向运动带来的自由面记忆效应较纵向和横向小;悬链线式模型所能提供的系泊拉力较张紧式系泊提供的拉力小;风浪联合作用下,风载荷主要激励低频固有频率运动,波浪载荷则主要激励波频运动;平台纵荡和纵摇运动受系泊系统的影响较大,而垂荡运动则不受系泊系统的影响。  相似文献   

14.
近年来海上浮式风机的研究备受关注,安全可靠的系泊系统将保证风机在风、浪、流等复杂环境荷载作用下稳定运行,准确合理地描述风机运动将为评估风机发电效率提供支持。以半潜型浮式风机的系泊系统为研究对象,基于经典悬链线理论,采用准静态分析法提出一套系泊系统的设计方法。通过坐标变换,得到风轮真实的俯仰运动用于计算风机的动力效应及评定其发电效率。采用动力法分析了系泊系统锚链的导缆孔位置、预张力大小、锚链间夹角等参数对风机系统发电效率、浮式平台运动性能和系泊锚链张力的影响,得到了浮式平台迎风面俯仰倾角、水平偏移及锚链张力随参数的变化规律,为半潜型浮式风机系泊系统的设计提供了参考。  相似文献   

15.
宋娜  刘昆 《船舶工程》2020,42(4):137-143
以DeepCwind海上风机为研究对象,利用有限元软件ANSYS AQWA进行风机频域水动力数值仿真分析,得到水动力参数以及幅频响应曲线,将得到的水动力参数导入到FAST软件中,对风机气动-水动-锚泊系统的时域耦合运动分析。在此基础上,讨论了气动载荷对于半潜式风机运动响应的影响。结果表明,气动载荷对于半潜式风机运动响应的影响较大且不可忽略,横摇,横荡以及首摇运动随着气动载荷的增大而增大,垂荡运动随着气动载荷的增大而减小,风作用在叶片上所产生的气动阻尼削弱了垂荡运动,增强了横荡、横摇和首摇运动。  相似文献   

16.
本文基于三维势流理论,采用数值分析方法研究了浮码头与散货船旁靠系泊的运动特性。考虑缆绳和护舷的非线性特性,探求了波浪周期对浮体运动、系缆力的影响规律。研究结果表明:考虑间隙内水体运动影响,旁靠散货船在横浪条件下的纵摇和纵荡运动有所增大。浮码头在计算工况下,缆绳受力较大,在某些工况条件下超出了国际系缆力标准的要求,旁靠散货船的缆绳在计算工况下均未超标,满足要求。研究结果为浮码头系泊系统的设计及工程运营提供理论参考。  相似文献   

17.
当前浮式平台船体结构分析的方法与重点综述(英文)   总被引:2,自引:0,他引:2  
浮式平台概念的选择及其结构设计是深水工程项目的关键环节之一.它决定了平台在波浪载荷作用下的动力学响应、立管在深水条件下的运动以及进行平台建造与安装的技术难度等.结构强度、结构的抗疲劳性能以及结构的整体和局部稳定性能是浮式平台设计必须重点考虑的三个主要方面.总结了当前浮式平台设计的主要方法和它的主要任务以及技术要求,着重分析了设计过程中的主要技术难点及重点;最后,讨论了浮式平台结构设计的潜在发展趋势.  相似文献   

18.
A linearized aero-hydro-servo-elastic floating wind turbine model is presented and used to perform integrated design optimization of the platform, tower, mooring system, and blade-pitch controller for a 10 MW spar floating wind turbine. Optimal design solutions are found using gradient-based optimization with analytic derivatives, considering both fatigue and extreme response constraints, where the objective function is a weighted combination of system cost and power quality. Optimization results show that local minima exist both in the soft-stiff and stiff-stiff range for the first tower bending mode and that a stiff-stiff tower design is needed to reach a solution that satisfies the fatigue constraints. The optimized platform has a relatively small diameter in the wave zone to limit the wave loads on the structure and an hourglass shape far below the waterline. The shape increases the restoring moment and natural frequency in pitch, which leads to improved behaviour in the low-frequency range. The importance of integrated optimization is shown in the solutions for the tower and blade-pitch control system, which are clearly affected by the simultaneous design of the platform. State-of-the-art nonlinear time-domain analyses show that the linearized model is conservative in general, but reasonably accurate in capturing trends, suggesting that the presented methodology is suitable for preliminary integrated design calculations.  相似文献   

19.
杜宇  胡金雄  王晨旭 《船舶工程》2020,42(12):13-17
本文采用数值仿真手段分析浮吊船的运动响应以确定采用浮吊船进行风电机组分体安装的可行性。利用基于边界元法的水动力学数值仿真的手段,计算强峰1800和苏连海起重08两艘起重船的浮体运动响应RAO。采用频域谱分析的方法,计算随机波条件下两船吊钩位置的垂荡运动响应谱,并通过波浪谱统计规律确定船舶的最大运动响应以及加速度响应,以确定风电机组分体安装的可行性。  相似文献   

20.
采用水动力分析软件AQWA对由软钢臂式单点系泊FPSO和油轮组成的串靠外输系统的动力响应和安全性进行研究。基于多体方法,建立串靠外输系统的有限元模型,计算4种拖轮拉力和24种作业海况下外输系统的连接大缆张力、两浮体相对艏向角及间距的时间历程,并分析波高、流速、风速、风浪流夹角、连接大缆长度等因素对系统动力响应的影响及动力响应特性。此外,还开展了串靠外输系统的风险分析,计算不同海况下连接大缆失效、船体碰撞和过分相对艏向运动的发生概率。研究结果对串靠外输系统的设计和外输作业具有一定的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号